
Control System Toolbox™

Reference

R2014b

How to Contact MathWorks

Latest news: www.mathworks.com

Sales and services: www.mathworks.com/sales_and_services

User community: www.mathworks.com/matlabcentral

Technical support: www.mathworks.com/support/contact_us

Phone: 508-647-7000

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098

Control System Toolbox™ Reference
© COPYRIGHT 2001–2014 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.
FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation
by, for, or through the federal government of the United States. By accepting delivery of the Program
or Documentation, the government hereby agrees that this software or documentation qualifies as
commercial computer software or commercial computer software documentation as such terms are used
or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and
conditions of this Agreement and only those rights specified in this Agreement, shall pertain to and
govern the use, modification, reproduction, release, performance, display, and disclosure of the Program
and Documentation by the federal government (or other entity acquiring for or through the federal
government) and shall supersede any conflicting contractual terms or conditions. If this License fails
to meet the government's needs or is inconsistent in any respect with federal procurement law, the
government agrees to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.
Patents

MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.

www.mathworks.com
www.mathworks.com/sales_and_services
www.mathworks.com/matlabcentral
www.mathworks.com/support/contact_us
http://www.mathworks.com/trademarks
http://www.mathworks.com/patents

Revision History

June 2001 Online only New for Version 5.1 (Release 12.1)
July 2002 Online only Revised for Version 5.2 (Release 13)
June 2004 Online only Revised for Version 6.0 (Release 14)
March 2005 Online only Revised for Version 6.2 (Release 14SP2)
September 2005 Online only Revised for Version 6.2.1 (Release 14SP3)
March 2006 Online only Revised for Version 7.0 (Release 2006a)
September 2006 Online only Revised for Version 7.1 (Release 2006b)
March 2007 Online only Revised for Version 8.0 (Release 2007a)
September 2007 Online only Revised for Version 8.0.1 (Release 2007b)
March 2008 Online only Revised for Version 8.1 (Release 2008a)
October 2008 Online only Revised for Version 8.2 (Release 2008b)
March 2009 Online only Revised for Version 8.3 (Release 2009a)
September 2009 Online only Revised for Version 8.4 (Release 2009b)
March 2010 Online only Revised for Version 8.5 (Release 2010a)
September 2010 Online only Revised for Version 9.0 (Release 2010b)
April 2011 Online only Revised for Version 9.1 (Release 2011a)
September 2011 Online only Revised for Version 9.2 (Release 2011b)
March 2012 Online only Revised for Version 9.3 (Release 2012a)
September 2012 Online only Revised for Version 9.4 (Release 2012b)
March 2013 Online only Revised for Version 9.5 (Release 2013a)
September 2013 Online only Revised for Version 9.6 (Release 2013b)
March 2014 Online only Revised for Version 9.7 (Release 2014a)
October 2014 Online only Revised for Version 9.8 (Release 2014b)

v

Contents

Functions — Alphabetical List
1

Block Reference
2

vi

1

Functions — Alphabetical List

1 Functions — Alphabetical List

1-2

abs
Entrywise magnitude of frequency response

Syntax

absfrd = abs(sys)

Description

absfrd = abs(sys) computes the magnitude of the frequency response contained in
the FRD model sys. For MIMO models, the magnitude is computed for each entry. The
output absfrd is an FRD object containing the magnitude data across frequencies.

See Also
bodemag | fnorm | sigma

 absorbDelay

1-3

absorbDelay
Replace time delays by poles at z = 0 or phase shift

Syntax

sysnd = absorbDelay(sysd)

[sysnd,G] = absorbDelay(sysd)

Description

sysnd = absorbDelay(sysd) absorbs all time delays of the “dynamic system model”
sysd into the system dynamics or the frequency response data.

For discrete-time models (other than frequency response data models), a delay of k
sampling periods is replaced by k poles at z = 0. For continuous-time models (other than
frequency response data models), time delays have no exact representation with a finite
number of poles and zeros. Therefore, use pade to compute a rational approximation of
the time delay.

For frequency response data models in both continuous and discrete time, absorbDelay
absorbs all time delays into the frequency response data as a phase shift.

[sysnd,G] = absorbDelay(sysd) returns the matrix G that maps the initial states
of the ss model sysd to the initial states of the sysnd.

Examples

Example 1

Create a discrete-time transfer function that has a time delay and absorb the time delay
into the system dynamics as poles at z = 0.

z = tf('z',-1);

sysd = (-.4*z -.1)/(z^2 + 1.05*z + .08);

sysd.InputDelay = 3

1 Functions — Alphabetical List

1-4

These commands produce the result:

Transfer function:

 -0.4 z - 0.1

z^(-3) * -------------------

 z^2 + 1.05 z + 0.08

Sampling time: unspecified

The display of sysd represents the InputDelay as a factor of z^(-3), separate from the
system poles that appear in the transfer function denominator.

Absorb the delay into the system dynamics.

sysnd = absorbDelay(sysd)

The display of sysnd shows that the factor of z^(-3) has been absorbed as additional
poles in the denominator.

Transfer function:

 -0.4 z - 0.1

z^5 + 1.05 z^4 + 0.08 z^3

Sampling time: unspecified

Additionally, sysnd has no input delay:

sysnd.InputDelay

ans =

 0

Example 2

Convert "nk" into regular coefficients of a polynomial model.

Consider the discrete-time polynomial model:

m = idpoly(1,[0 0 0 2 3]);

The value of the B polynomial, m.b, has 3 leading zeros. Two of these zeros are treated as
input-output delays. Consequently:

 absorbDelay

1-5

sys = tf(m)

creates a transfer function such that the numerator is [0 2 3] and the IO delay is 2. In
order to treat the leading zeros as regular B coefficients, use absorbDelay:

m2 = absorbDelay(m);

sys2 = tf(m2);

sys2's numerator is [0 0 0 2 3] and IO delay is 0. The model m2 treats the leading
zeros as regular coefficients by freeing their values. m2.Structure.b.Free(1:2) is
TRUE while m.Structure.b.Free(1:2) is FALSE.

See Also
totaldelay | hasdelay | pade

1 Functions — Alphabetical List

1-6

allmargin
Gain margin, phase margin, delay margin and crossover frequencies

Syntax

S = allmargin(sys)

S = allmargin(mag,phase,w,ts)

Description

S = allmargin(sys) computes the gain margin, phase margin, delay margin and the
corresponding crossover frequencies of the SISO open-loop model sys. The allmargin
command is applicable to any SISO model, including models with delays.

The output S is a structure with the following fields:

• GMFrequency — All –180° (modulo 360°) crossover frequencies in rad/TimeUnit,
where TimeUnit is the time units of the input dynamic system, specified in the
TimeUnit property of sys.

• GainMargin — Corresponding gain margins, defined as 1/G, where G is the gain at
the –180° crossover frequency. Gain margins are in absolute units.

• PMFrequency — All 0 dB crossover frequencies in rad/TimeUnit, where TimeUnit
is the time units of the input dynamic system, specified in the TimeUnit property of
sys).

• PhaseMargin — Corresponding phase margins in degrees.
• DMFrequency and DelayMargin — Critical frequencies and the corresponding delay

margins. Delay margins are specified in the time units of the system for continuous-
time systems and multiples of the sample time for discrete-time systems.

• Stable — 1 if the nominal closed-loop system is stable, 0 otherwise.

Where stability cannot be assessed, Stable is set to NaN. In general, stability cannot
be assessed for an frd system.

S = allmargin(mag,phase,w,ts) computes the stability margins from the frequency
response data mag, phase, w, and the sampling time, ts. Provide magnitude values mag

 allmargin

1-7

in absolute units, and phase values phase in degrees. You can provide the frequency
vector w in any units; allmargin returns frequencies in the same units. allmargin
interpolates between frequency points to approximate the true stability margins.

See Also
ltiview | margin

1 Functions — Alphabetical List

1-8

AnalysisPoint

Points of interest for linear analysis

Syntax

AP = AnalysisPoint(name)

AP = AnalysisPoint(name,N)

Description

AnalysisPoint is a Control Design Block for marking a location in a control system
model as a point of interest for linear analysis and controller tuning. You can combine an
AnalysisPoint block with numeric LTI models, tunable LTI models, and other Control
Design Blocks to build tunable models of control systems. AnalysisPoint locations are
available for analysis with commands such as getIOTransfer or getLoopTransfer.
Such locations are also available for specifying design goals for control system tuning.

For example, consider the following control system.

Suppose that you are interested in the effects of disturbance injected at u in this control
system. Inserting an AnalysisPoint block at the location u associates an implied
input, implied output, and the option to open the loop at that location, as in the following
diagram.

 AnalysisPoint

1-9

Suppose that T is a model of the control system including the AnalysisPoint
block, AP_u. In this case, the command getIOTransfer(T,'AP_u','y') returns
a model of the closed-loop transfer function from u to y. Likewise, the command
getLoopTransfer(T,'AP_u') returns a model of the open-loop response measured at
the location u.

AnalysisPoint blocks are also useful when tuning a control system using
Robust Control Toolbox™ tuning commands such as systune. You can use an
AnalysisPoint block to mark a loop-opening location for open-loop tuning
requirements such as TuningGoal.LoopShape or TuningGoal.Margins.
You can also use a AnalysisPoint block to mark the specified input or output
for tuning requirements such as TuningGoal.Gain. For example, Req =
TuningGoal.Margins('AP_u',5,40) constrains the gain and phase margins at the
location u.

Construction
AP = AnalysisPoint(name) creates a single-channel analysis point. Insert AP
anywhere in the generalized model of your control system to mark a point of interest for
linear analysis or controller tuning. name specifies the block name.

AP = AnalysisPoint(name,N) creates a multi-channel analysis point with N
channels. Use this block to mark a vector-valued signal as a point of interest or to bundle
together several points of interest.

1 Functions — Alphabetical List

1-10

Input Arguments

name

Analysis point name, specified as a string. This input argument sets the value of the
Name property of the AnalysisPoint block. (See “Properties” on page 1-10.) When
you build a control system model using the block, the Name property is what appears in
the Blocks list of the resulting genss model.

N

Number of channels for a multichannel analysis point, specified as a scalar integer.

Properties

Location

Names of channels in the AnalysisPoint blocks, specified as a string or a cell array of
strings.

By default, the analysis-point channels are named after the name argument. For
example, if you have a single-channel analysis point, AP, that has name 'AP', then
AP.Location = 'AP' by default. If you have a multi-channel analysis point, then
AP.Location = {'AP(1)','AP(2)',...} by default. Set AP.Location to a different
value if you want to customize the channel names.

Open

Loop-opening state, specified as a logical value or vector of logical values. This property
tracks whether the loop is open or closed at the analysis point.

For example, consider the feedback loop of the following illustration.

r
-

G(s)C(s) y
+

X

 AnalysisPoint

1-11

You can model this feedback loop as follows.

G = tf(1,[1 2]);

C = ltiblock.pid('C','pi');

X = AnalysisPoint('X');

T = feedback(G*C,X);

You can get the transfer function from r to y with the feedback loop open at X as follows.

 Try = getIOTransfer(T,'r','y','X');

In the resulting generalized state-space (genss) model, the AnalysisPoint block 'X' is
marked open. In other words, Try.Blocks.X.Open = 1.

For a multi-channel analysis point, then Open is a logical vector with as many entries as
the analsysis point has channels.

Default: 0 for all channels

Ts

Sampling time. For AnalysisPoint blocks, the value of this property is automatically
set to the sampling time of other blocks and models you connect it with.

Default: 0 (continuous time)

TimeUnit

String representing the unit of the time variable. This property specifies the units for the
time variable, the sampling time Ts, and any time delays in the model. Use any of the
following values:

• 'nanoseconds'

• 'microseconds'

• 'milliseconds'

• 'seconds'

• 'minutes'

• 'hours'

• 'days'

1 Functions — Alphabetical List

1-12

• 'weeks'

• 'months'

• 'years'

Changing this property has no effect on other properties, and therefore changes the
overall system behavior. Use chgTimeUnit to convert between time units without
modifying system behavior.

Default: 'seconds'

InputName

Input channel names. Set InputName to a string for single-input model. For a multi-
input model, set InputName to a cell array of strings.

Alternatively, use automatic vector expansion to assign input names for multi-input
models. For example, if sys is a two-input model, enter:

sys.InputName = 'controls';

The input names automatically expand to {'controls(1)';'controls(2)'}.

You can use the shorthand notation u to refer to the InputName property. For example,
sys.u is equivalent to sys.InputName.

Input channel names have several uses, including:

• Identifying channels on model display and plots
• Extracting subsystems of MIMO systems
• Specifying connection points when interconnecting models

Default: Empty string '' for all input channels

InputUnit

Input channel units. Use InputUnit to keep track of input signal units. For a single-
input model, set InputUnit to a string. For a multi-input model, set InputUnit to a cell
array of strings. InputUnit has no effect on system behavior.

Default: Empty string '' for all input channels

 AnalysisPoint

1-13

InputGroup

Input channel groups. The InputGroup property lets you assign the input channels of
MIMO systems into groups and refer to each group by name. Specify input groups as a
structure. In this structure, field names are the group names, and field values are the
input channels belonging to each group. For example:

sys.InputGroup.controls = [1 2];

sys.InputGroup.noise = [3 5];

creates input groups named controls and noise that include input channels 1, 2 and
3, 5, respectively. You can then extract the subsystem from the controls inputs to all
outputs using:

sys(:,'controls')

Default: Struct with no fields

OutputName

Output channel names. Set OutputName to a string for single-output model. For a multi-
output model, set OutputName to a cell array of strings.

Alternatively, use automatic vector expansion to assign output names for multi-output
models. For example, if sys is a two-output model, enter:

sys.OutputName = 'measurements';

The output names to automatically expand to
{'measurements(1)';'measurements(2)'}.

You can use the shorthand notation y to refer to the OutputName property. For example,
sys.y is equivalent to sys.OutputName.

Output channel names have several uses, including:

• Identifying channels on model display and plots
• Extracting subsystems of MIMO systems
• Specifying connection points when interconnecting models

Default: Empty string '' for all input channels

1 Functions — Alphabetical List

1-14

OutputUnit

Output channel units. Use OutputUnit to keep track of output signal units. For
a single-output model, set OutputUnit to a string. For a multi-output model, set
OutputUnit to a cell array of strings. OutputUnit has no effect on system behavior.

Default: Empty string '' for all input channels

OutputGroup

Output channel groups. The OutputGroup property lets you assign the output channels
of MIMO systems into groups and refer to each group by name. Specify output groups as
a structure. In this structure, field names are the group names, and field values are the
output channels belonging to each group. For example:

sys.OutputGroup.temperature = [1];

sys.InputGroup.measurement = [3 5];

creates output groups named temperature and measurement that include output
channels 1, and 3, 5, respectively. You can then extract the subsystem from all inputs to
the measurement outputs using:

sys('measurement',:)

Default: Struct with no fields

Name

System name. Set Name to a string to label the system.

Default: ''

Notes

Any text that you want to associate with the system. Set Notes to a string or a cell array
of strings.

Default: {}

UserData

Any type of data you wish to associate with system. Set UserData to any MATLAB® data
type.

 AnalysisPoint

1-15

Default: []

Examples

Feedback Loop with Analysis Point

Create a model of the following feedback loop with an analysis point in the feedback
path.

For this example, the plant model is . C is a tunable PI controller, and X is
the analysis point.

G = tf(1,[1 2]);

C = ltiblock.pid('C','pi');

X = AnalysisPoint('X');

T = feedback(G*C,X);

T.InputName = 'r';

T.OutputName = 'y';

T is a tunable genss model. T.Blocks contains the Control Design Blocks of the model,
which are the controller, C, and the analysis point, X.

T.Blocks

ans =

1 Functions — Alphabetical List

1-16

 C: [1x1 ltiblock.pid]

 X: [1x1 AnalysisPoint]

Examine the step response of T.

stepplot(T)

The presence of the AnalysisPoint block does not change the dynamics of the model.

You can use the analysis point for linear analysis of the system. For instance, extract the
system response at 'y' to a disturbance injected at the analysis point.

Txy = getIOTransfer(T,'X','y');

 AnalysisPoint

1-17

The AnalysisPoint block also allows you to temporarily open the feedback loop at that
point. For example, compute the open-loop response from 'r' to 'y'.

Try_open = getIOTransfer(T,'r','y','X');

Specifying the analysis point name as the last argument to getIOTransfer extracts the
response with the loop open at that point. Examine the step response of Try_open to
verify that it is the open-loop response.

stepplot(Try_open);

Multi-Channel Analysis Points

Create a block for marking two analysis points in a MIMO model.

1 Functions — Alphabetical List

1-18

In the control system of the following illustration, consider each signal a vector-valued
signal of size 2. In other words, the signal r represents {r(1),r(2)}, y represents
{y(1),y(2)}, and so on.

r
-

G(s)C(s) y
+

X

The feedback signal is therefore also a vector-valued signal of size 2.

Create a block for marking the two analysis points in the feedback path.

AP = AnalysisPoint('X',2)

AP =

Multi-channel analysis point at locations:

 X(1)

 X(2)

Type "ss(AP)" to see the current value and "get(AP)" to see all properties.

The AnalysisPoint block is stored as a variable in the MATLAB workspace called AP.
In addition, the Name property of the block is set to X. When you interconnect the block
with numeric LTI models or other Control Design Blocks, this analysis-point block is
identified in the Blocks property of the resulting genss model as X. The block name X is
automatically expanded to generate the channel names X(1) and X(2).

It is sometimes convenient to change the channel names to match the names of the
signals they correspond to in a block diagram of your model. For example, suppose the
points of interest you want to mark in your model are signals named L and V. Change the
Location property of AP to make the names match those signals.

AP.Location = {'L';'V'}

AP =

Multi-channel analysis point at locations:

 L

 V

 AnalysisPoint

1-19

Type "ss(AP)" to see the current value and "get(AP)" to see all properties.

Although the channel names have changed, the block name remains X.

AP.Name

ans =

X

Therefore, the Blocks property of a genss model you build with this block still identifies
the block as X.

• “Control System with Multi-Channel Analysis Points”

More About
• “Control Design Blocks”
• “Models with Tunable Coefficients”
• “Managing Signals in Control System Analysis and Design”

See Also
genss | getPoints

1 Functions — Alphabetical List

1-20

append
Group models by appending their inputs and outputs

Syntax
sys = append(sys1,sys2,...,sysN)

Description
sys = append(sys1,sys2,...,sysN) appends the inputs and outputs of the models
sys1,...,sysN to form the augmented model sys depicted below.

For systems with transfer functions H1(s), . . . , HN(s), the resulting system sys has the
block-diagonal transfer function

H s

H s

H s
N

1

2

0 0

0

0

0 0

()

()

()

…

L M

M M O

L

È

Î

Í
Í
Í
Í

˘

˚

˙
˙
˙
˙

 append

1-21

For state-space models sys1 and sys2 with data (A1, B1, C1, D1) and (A2, B2, C2, D2),
append(sys1,sys2) produces the following state-space model:

&

&

x

x

A

A

x

x

B

B

u

u

1

2

1

2

1

2

1

2

1

2

0

0

0

0

È

Î
Í

˘

˚
˙ =

È

Î
Í

˘

˚
˙

È

Î
Í

˘

˚
˙ +

È

Î
Í

˘

˚
˙
È

Î
Í

˘

˚
˙

yy

y

C

C

x

x

D

D

u

u

1

2

1

2

1

2

1

2

1

2

0

0

0

0

È

Î
Í

˘

˚
˙ =

È

Î
Í

˘

˚
˙

È

Î
Í

˘

˚
˙ +

È

Î
Í

˘

˚
˙
È

Î
Í

˘

˚
˙

Arguments

The input arguments sys1,..., sysN can be model objects s of any type. Regular matrices
are also accepted as a representation of static gains, but there should be at least one
model in the input list. The models should be either all continuous, or all discrete with
the same sample time. When appending models of different types, the resulting type is
determined by the precedence rules (see “Rules That Determine Model Type” for details).

There is no limitation on the number of inputs.

Examples

The commands

sys1 = tf(1,[1 0]);

sys2 = ss(1,2,3,4);

sys = append(sys1,10,sys2)

produce the state-space model

a =

 x1 x2

 x1 0 0

 x2 0 1

b =

 u1 u2 u3

 x1 1 0 0

 x2 0 0 2

1 Functions — Alphabetical List

1-22

c =

 x1 x2

 y1 1 0

 y2 0 0

 y3 0 3

d =

 u1 u2 u3

 y1 0 0 0

 y2 0 10 0

 y3 0 0 4

Continuous-time model.

See Also
connect | feedback | parallel | series

 augstate

1-23

augstate
Append state vector to output vector

Syntax

asys = augstate(sys)

Description

asys = augstate(sys) appends the state vector to the outputs of a state-space model.

Given a state-space model sys with equations

&x Ax Bu

y Cx Du

= +
= +

(or their discrete-time counterpart), augstate appends the states x to the outputs y to
form the model

&x Ax Bu

y

x

C

I
x

D
u

= +

 =

 +

0

This command prepares the plant so that you can use the feedback command to close
the loop on a full-state feedback u = −Kx.

Limitation

Because augstate is only meaningful for state-space models, it cannot be used with TF,
ZPK or FRD models.

See Also
feedback | parallel | series

1 Functions — Alphabetical List

1-24

balreal

Gramian-based input/output balancing of state-space realizations

Syntax

[sysb, g] = balreal(sys)

[sysb, g] = balreal(sys,'AbsTol',ATOL,'RelTol',RTOL,'Offset',ALPHA)

[sysb, g] = balreal(sys, condmax)

[sysb, g, T, Ti] = balreal(sys)

[sysb, g] = balreal(sys, opts)

Description

[sysb, g] = balreal(sys) computes a balanced realization sysb for the stable
portion of the LTI model sys. balreal handles both continuous and discrete systems. If
sys is not a state-space model, it is first and automatically converted to state space using
ss.

For stable systems, sysb is an equivalent realization for which the controllability and
observability Gramians are equal and diagonal, their diagonal entries forming the vector
G of Hankel singular values. Small entries in G indicate states that can be removed to
simplify the model (use modred to reduce the model order).

If sys has unstable poles, its stable part is isolated, balanced, and added back to its
unstable part to form sysb. The entries of g corresponding to unstable modes are set to
Inf.

[sysb, g] = balreal(sys,'AbsTol',ATOL,'RelTol',RTOL,'Offset',ALPHA)

specifies additional options for the stable/unstable decomposition. See the stabsep
reference page for more information about these options. The default values are ATOL =
0, RTOL = 1e-8, and ALPHA = 1e-8.

[sysb, g] = balreal(sys, condmax) controls the condition number of the stable/
unstable decomposition. Increasing condmax helps separate close by stable and unstable
modes at the expense of accuracy. By default condmax=1e8.

 balreal

1-25

[sysb, g, T, Ti] = balreal(sys) also returns the vector g containing the
diagonal of the balanced gramian, the state similarity transformation xb = Tx used to
convert sys to sysb, and the inverse transformation Ti = T-1.

If the system is normalized properly, the diagonal g of the joint gramian can be used to
reduce the model order. Because g reflects the combined controllability and observability
of individual states of the balanced model, you can delete those states with a small g(i)
while retaining the most important input-output characteristics of the original system.
Use modred to perform the state elimination.

[sysb, g] = balreal(sys, opts) computes the balanced realization using the
options specified in the hsvdOptions object opts.

Examples

Balanced Realization of Stable System

Consider the following zero-pole-gain model, with near-canceling pole-zero pairs:

sys = zpk([-10 -20.01],[-5 -9.9 -20.1],1)

sys =

 (s+10) (s+20.01)

 (s+5) (s+9.9) (s+20.1)

Continuous-time zero/pole/gain model.

A state-space realization with balanced gramians is obtained by

[sysb,g] = balreal(sys);

The diagonal entries of the joint gramian are

g'

1 Functions — Alphabetical List

1-26

ans =

 0.1006 0.0001 0.0000

This indicates that the last two states of sysb are weakly coupled to the input and
output. You can then delete these states by

sysr = modred(sysb,[2 3],'del');

This yields the following first-order approximation of the original system.

zpk(sysr)

ans =

 1.0001

 (s+4.97)

Continuous-time zero/pole/gain model.

Compare the Bode responses of the original and reduced-order models.

bodeplot(sys,sysr,'r--')

 balreal

1-27

The plots shows that removing the second and third states does not have much effect on
system dynamics.

Balanced Realization of Unstable System

Create this unstable system:

sys1=tf(1,[1 0 -1])

Transfer function:

 1

s^2 - 1

1 Functions — Alphabetical List

1-28

Apply balreal to create a balanced gramian realization.

[sysb,g]=balreal(sys1)

a =

 x1 x2

 x1 1 0

 x2 0 -1

b =

 u1

 x1 0.7071

 x2 0.7071

c =

 x1 x2

 y1 0.7071 -0.7071

d =

 u1

 y1 0

Continuous-time model.

g =

 Inf

 0.2500

The unstable pole shows up as Inf in vector g.

More About

Algorithms

Consider the model

&x Ax Bu

y Cx Du

= +
= +

 balreal

1-29

with controllability and observability gramians Wc and Wo. The state coordinate
transformation x Tx= produces the equivalent model

&x TAT x TBu

y CT x Du

= +

= +

−

−

1

1

and transforms the gramians to

W TW T W T W T
c c

T

o

T

o
= = − −

,
1

The function balreal computes a particular similarity transformation T such that

W W diag gc o= = ()

See [1], [2] for details on the algorithm.

References

[1] Laub, A.J., M.T. Heath, C.C. Paige, and R.C. Ward, "Computation of System
Balancing Transformations and Other Applications of Simultaneous
Diagonalization Algorithms," IEEE® Trans. Automatic Control, AC-32 (1987), pp.
115-122.

[2] Moore, B., "Principal Component Analysis in Linear Systems: Controllability,
Observability, and Model Reduction," IEEE Transactions on Automatic Control,
AC-26 (1981), pp. 17-31.

[3] Laub, A.J., "Computation of Balancing Transformations," Proc. ACC, San Francisco,
Vol.1, paper FA8-E, 1980.

See Also
hsvdOptions | ss | gram | modred

1 Functions — Alphabetical List

1-30

balred
Model order reduction

Syntax
rsys = balred(sys,ORDERS)

rsys = balred(sys,ORDERS,BALDATA)

rsys = balred(___ ,opts)

Description
rsys = balred(sys,ORDERS) computes a reduced-order approximation rsys of the
LTI model sys. The desired order (number of states) for rsys is specified by ORDERS.
You can try multiple orders at once by setting ORDERS to a vector of integers, in which
case rsys is a vector of reduced-order models. balred uses implicit balancing techniques
to compute the reduced- order approximation rsys. Use hsvd to plot the Hankel singular
values and pick an adequate approximation order. States with relatively small Hankel
singular values can be safely discarded.

When sys has unstable poles, it is first decomposed into its stable and unstable parts
using stabsep, and only the stable part is approximated. Use balredOptions to specify
additional options for the stable/unstable decomposition.

When you have System Identification Toolbox™ software installed, sys can only be an
identified state-space model (idss). The reduced-order model is also an idss model.

rsys = balred(sys,ORDERS,BALDATA) uses balancing data returned by hsvd.
Because hsvd does most of the work needed to compute rsys, this syntax is more
efficient when using hsvd and balred jointly.

rsys = balred(___ ,opts) computes the model reduction using the specified
options for the stable/unstable decomposition and state elimination method. Use the
balredOptions command to create the option setopts.

Note: The order of the approximate model is always at least the number of unstable poles
and at most the minimal order of the original model (number NNZ of nonzero Hankel
singular values using an eps-level relative threshold)

 balred

1-31

More About
• “Why Simplify Models?”

References

[1] Varga, A., "Balancing-Free Square-Root Algorithm for Computing Singular
Perturbation Approximations," Proc. of 30th IEEE CDC, Brighton, UK (1991), pp.
1062-1065.

See Also
balredOptions | hsvd | order | minreal | sminreal

Related Examples
• “Approximate Model with Lower-Order Model”
• “Approximate Model with Unstable or Near-Unstable Pole”

1 Functions — Alphabetical List

1-32

balredOptions
Create option set for model order reduction

Syntax

opts = balredOptions

opts = balredOptions('OptionName', OptionValue)

Description

opts = balredOptions returns the default option set for the balred command.

opts = balredOptions('OptionName', OptionValue) accepts one or more
comma-separated name/value pairs. Specify OptionName inside single quotes.

Input Arguments

Name-Value Pair Arguments

'StateElimMethod'

State elimination method. Specifies how to eliminate the weakly coupled states (states
with smallest Hankel singular values). Specified as one of the following values:

'MatchDC' Discards the specified states and alters the remaining states to
preserve the DC gain.

'Truncate' Discards the specified states without altering the remaining
states. This method tends to product a better approximation in the
frequency domain, but the DC gains are not guaranteed to match.

Default: 'MatchDC'

'AbsTol, RelTol'

Absolute and relative error tolerance for stable/unstable decomposition. Positive scalar
values. For an input model G with unstable poles, balred first extracts the stable

 balredOptions

1-33

dynamics by computing the stable/unstable decomposition G → GS + GU. The AbsTol
and RelTol tolerances control the accuracy of this decomposition by ensuring that the
frequency responses of G and GS + GU differ by no more than AbsTol + RelTol*abs(G).
Increasing these tolerances helps separate nearby stable and unstable modes at the
expense of accuracy. See stabsep for more information.

Default: AbsTol = 0; RelTol = 1e-8

'Offset'

Offset for the stable/unstable boundary. Positive scalar value. In the stable/unstable
decomposition, the stable term includes only poles satisfying

• Re(s) < -Offset * max(1,|Im(s)|) (Continuous time)
• |z| < 1 - Offset (Discrete time)

Increase the value of Offset to treat poles close to the stability boundary as unstable.

Default: 1e-8

For additional information on the options and how to use them, see the balred reference
page.

Examples

Reduced-Order Approximation with Offset Option

Compute a reduced-order approximation of the system given by:

Use the Offset option to exclude the pole at from the stable term of the stable/
unstable decomposition.

sys = zpk([-.5 -1.1 -2.9],[-1e-6 -2 -1 -3],1);

% Create balredOptions

opt = balredOptions('Offset',.001,'StateElimMethod','Truncate');

% Compute second-order approximation

rsys = balred(sys,2,opt);

1 Functions — Alphabetical List

1-34

Compare the responses of the original and reduced-order models.

bodeplot(sys,rsys,'r--')

See Also
balred | stabsep

 bandwidth

1-35

bandwidth
Frequency response bandwidth

Syntax

fb = bandwidth(sys)

fb = bandwidth(sys,dbdrop)

Description

fb = bandwidth(sys) computes the bandwidth fb of the SISO “dynamic system
model” sys, defined as the first frequency where the gain drops below 70.79 percent (-3
dB) of its DC value. The frequency fb is expressed in rad/TimeUnit, where TimeUnit
is the time units of the input dynamic system, specified in the TimeUnit property of sys.

For FRD models, bandwidth uses the first frequency point to approximate the DC gain.

fb = bandwidth(sys,dbdrop) specifies the critical gain drop in dB. The default
value is -3 dB, or a 70.79 percent drop.

If sys is an S1-by...-by-Sp array of models, bandwidth returns an array of the same size
such that

fb(j1,...,jp) = bandwidth(sys(:,:,j1,...,jp))

See Also
issiso | dcgain

1 Functions — Alphabetical List

1-36

bdschur
Block-diagonal Schur factorization

Syntax

[T,B,BLKS] = bdschur(A,CONDMAX)

[T,B] = bdschur(A,[],BLKS)

Description

[T,B,BLKS] = bdschur(A,CONDMAX) computes a transformation matrix T such that
B = T \ A * T is block diagonal and each diagonal block is a quasi upper-triangular Schur
matrix.

[T,B] = bdschur(A,[],BLKS) pre-specifies the desired block sizes. The input matrix
A should already be in Schur form when you use this syntax.

Input Arguments

• A: Matrix for block-diagonal Schur factorization.
• CONDMAX: Specifies an upper bound on the condition number of T. By default,

CONDMAX = 1/sqrt(eps). Use CONDMAX to control the tradeoff between block size
and conditioning of T with respect to inversion. When CONDMAX is a larger value, the
blocks are smaller and T becomes more ill-conditioned.

Output Arguments

• T: Transformation matrix.
• B: Matrix B = T \ A * T.
• BLKS: Vector of block sizes.

See Also
ordschur | schur

 blkdiag

1-37

blkdiag
Block-diagonal concatenation of models

Syntax

sys = blkdiag(sys1,sys2,...,sysN)

Description

sys = blkdiag(sys1,sys2,...,sysN) produces the aggregate system

sys

sys

sysN

1 0 0

0 2

0

0 0

..

. :

: . .

..

È

Î

Í
Í
Í
Í

˘

˚

˙
˙
˙
˙

blkdiag is equivalent to append.

Examples

The commands

sys1 = tf(1,[1 0]);

sys2 = ss(1,2,3,4);

sys = blkdiag(sys1,10,sys2)

produce the state-space model

a =

 x1 x2

 x1 0 0

 x2 0 1

b =

 u1 u2 u3

1 Functions — Alphabetical List

1-38

 x1 1 0 0

 x2 0 0 2

c =

 x1 x2

 y1 1 0

 y2 0 0

 y3 0 3

d =

 u1 u2 u3

 y1 0 0 0

 y2 0 10 0

 y3 0 0 4

Continuous-time model.

See Also
append | series | parallel | feedback

 bode

1-39

bode

Bode plot of frequency response, magnitude and phase of frequency response

Syntax

bode(sys)

bode(sys1,...,sysN)

bode(sys1,PlotStyle1,...,sysN,PlotStyleN)

bode(...,w)

[mag,phase] = bode(sys,w)

[mag,phase,wout] = bode(sys)

[mag,phase,wout,sdmag,sdphase] = bode(sys)

Description

bode(sys) creates a Bode plot of the frequency response of a “dynamic system model”
sys. The plot displays the magnitude (in dB) and phase (in degrees) of the system
response as a function of frequency.

When sys is a multi-input, multi-output (MIMO) model, bode produces an array of Bode
plots, each plot showing the frequency response of one I/O pair.

bode automatically determines the plot frequency range based on system dynamics.

1 Functions — Alphabetical List

1-40

bode(sys1,...,sysN) plots the frequency response of multiple dynamic systems in a
single figure. All systems must have the same number of inputs and outputs.

bode(sys1,PlotStyle1,...,sysN,PlotStyleN) plots system responses using the
color, linestyle, and markers specified by the PlotStyle strings.

bode(...,w) plots system responses at frequencies determined by w.

• If w is a cell array {wmin,wmax}, bode(sys,w) plots the system response at
frequency values in the range {wmin,wmax}.

• If w is a vector of frequencies, bode(sys,w) plots the system response at each of the
frequencies specified in w.

[mag,phase] = bode(sys,w) returns magnitudes mag in absolute units and phase
values phase in degrees. The response values in mag and phase correspond to the
frequencies specified by w as follows:

• If w is a cell array {wmin,wmax}, [mag,phase] = bode(sys,w) returns the system
response at frequency values in the range {wmin,wmax}.

• If w is a vector of frequencies, [mag,phase] = bode(sys,w) returns the system
response at each of the frequencies specified in w.

[mag,phase,wout] = bode(sys) returns magnitudes, phase values, and frequency
values wout corresponding to bode(sys).

 bode

1-41

[mag,phase,wout,sdmag,sdphase] = bode(sys) additionally returns the
estimated standard deviation of the magnitude and phase values when sys is an
“identified model” and [] otherwise.

Input Arguments
sys

“Dynamic system model”, such as a Numeric LTI model, or an array of such models.

PlotStyle

Line style, marker, and color of both the line and marker, specified as a one-, two-, or
three-part string enclosed in single quotes (' '). The elements of the string can appear
in any order. The string can specify only the line style, the marker, or the color.

For more information about configuring the PlotStyle string, see “Specify Line Style,
Color, and Markers” in the MATLAB documentation.

w

Input frequency values, specified as a row vector or a two-element cell array.

Possible values of w:

• Two-element cell array {wmin,wmax}, where wmin is the minimum frequency value
and wmax is the maximum frequency value.

• Row vector of frequency values.

For example, use logspace to generate a row vector with logarithmically-spaced
frequency values.

Specify frequency values in radians per TimeUnit, where TimeUnit is the time units of
the input dynamic system, specified in the TimeUnit property of sys.

Output Arguments
mag

Bode magnitude of the system response in absolute units, returned as a 3-D array with
dimensions (number of outputs) × (number of inputs) × (number of frequency points).

1 Functions — Alphabetical List

1-42

• For a single-input, single-output (SISO) sys, mag(1,1,k) gives the magnitude of the
response at the kth frequency.

• For MIMO systems, mag(i,j,k) gives the magnitude of the response from the jth
input to the ith output.

You can convert the magnitude from absolute units to decibels using:

magdb = 20*log10(mag)

phase

Phase of the system response in degrees, returned as a 3-D array with dimensions are
(number of outputs) × (number of inputs) × (number of frequency points).

• For SISO sys, phase(1,1,k) gives the phase of the response at the kth frequency.
• For MIMO systems, phase(i,j,k) gives the phase of the response from the jth

input to the ith output.

wout

Response frequencies, returned as a row vector of frequency points. Frequency values are
in radians per TimeUnit, where TimeUnit is the value of the TimeUnit property of sys.

sdmag

Estimated standard deviation of the magnitude. sdmag has the same dimensions as mag.

If sys is not an “identified LTI model”, sdmag is [].

sdphase

Estimated standard deviation of the phase. sdphase has the same dimensions as phase.

If sys is not an “identified LTI model”, sdphase is [].

Examples

Bode Plot of Dynamic System

 bode

1-43

Create a Bode plot of the following continuous-time SISO dynamic system.

H = tf([1 0.1 7.5],[1 0.12 9 0 0]);

bode(H)

bode automatically selects the plot range based on the system dynamics.

Bode Plot at Specified Frequencies

1 Functions — Alphabetical List

1-44

Create a Bode plot over a specified frequency range. Use this approach when you want to
focus on the dynamics in a particular range of frequencies.

H = tf([1 0.1 7.5],[1 0.12 9 0 0]);

bode(H,{0.1,10})

The cell array {0.1,10} specifies the minimum and maximum frequency values in
the Bode plot. When you provide frequency bounds in this way, the software selects
intermediate points for frequency response data.

Alternatively, specify a vector of frequency points to use for evaluating and plotting the
frequency response.

w = logspace(-1,1,100);

bode(H,w)

 bode

1-45

logspace defines a logarithmically spaced frequency vector in the range of 0.1-10 rad/s.

Compare Bode Plots of Several Dynamic Systems

Compare the frequency response of a continuous-time system to an equivalent discretized
system on the same Bode plot.

Create continuous-time and discrete-time dynamic systems.

H = tf([1 0.1 7.5],[1 0.12 9 0 0]);

Hd = c2d(H,0.5,'zoh');

Create a Bode plot that displays both systems.

1 Functions — Alphabetical List

1-46

bode(H,Hd)

The Bode plot of a discrete-time system includes a vertical line marking the Nyquist
frequency of the system.

Bode Plot with Specified Line and Marker Attributes

Specify the color, linestyle, or marker for each system in a Bode plot using the
PlotStyle input arguments.

H = tf([1 0.1 7.5],[1 0.12 9 0 0]);

Hd = c2d(H,0.5,'zoh');

bode(H,'r',Hd,'b--')

 bode

1-47

The string 'r' specifies a solid red line for the response of H. The string 'b--' specifies
a dashed blue line for the response of Hd.

Obtain Magnitude and Phase Data

Compute the magnitude and phase of the frequency response of a dynamic system.

H = tf([1 0.1 7.5],[1 0.12 9 0 0]);

[mag phase wout] = bode(H);

Because H is a SISO model, the first two dimensions of mag and phase are both 1. The
third dimension is the number of frequencies in wout.

1 Functions — Alphabetical List

1-48

Bode Plot of Identified Model

Compare the frequency response of a parametric model, identified from input/output
data, to a nonparametric model identified using the same data.

Identify parametric and non-parametric models based on data.

load iddata2 z2;

w = linspace(0,10*pi,128);

sys_np = spa(z2,[],w);

sys_p = tfest(z2,2);

Using the spa and tfest commands requires System Identification Toolbox™ software.

sys_np is a non-parametric identified model. sys_p is a parametric identified model.

Create a Bode plot that includes both systems.

bode(sys_np,sys_p,w);

legend('sys-np','sys-p')

 bode

1-49

Obtain Magnitude and Phase Standard Deviation Data of Identified
Model

Compute the standard deviation of the magnitude and phase of an identified model. Use
this data to create a 3σ plot of the response uncertainty.

Identify a transfer function model based on data. Obtain the standard deviation data for
the magnitude and phase of the frequency response.

load iddata2 z2;

sys_p = tfest(z2,2);

w = linspace(0,10*pi,128);

[mag,ph,w,sdmag,sdphase] = bode(sys_p,w);

1 Functions — Alphabetical List

1-50

Using the tfest command requires System Identification Toolbox™ software.

sys_p is an identified transfer function model. sdmag and sdphase contain the standard
deviation data for the magnitude and phase of the frequency response, respectively.

Use the standard deviation data to create a 3σ plot corresponding to the confidence
region.

mag = squeeze(mag);

sdmag = squeeze(sdmag);

semilogx(w,mag,'b',w,mag+3*sdmag,'k:',w,mag-3*sdmag,'k:');

 bode

1-51

Alternatives

Use bodeplot when you need additional plot customization options.

More About

Algorithms

bode computes the frequency response using these steps:

1 Computes the zero-pole-gain (zpk) representation of the dynamic system.

1 Functions — Alphabetical List

1-52

2 Evaluates the gain and phase of the frequency response based on the zero, pole, and
gain data for each input/output channel of the system.

a For continuous-time systems, bode evaluates the frequency response on the
imaginary axis s = jω and considers only positive frequencies.

b For discrete-time systems, bode evaluates the frequency response on the unit
circle. To facilitate interpretation, the command parameterizes the upper half of
the unit circle as

z e
T

j T
N

s

s= £ £ =
w

w w
p

, ,0

where Ts is the sampling time. ωN is the Nyquist frequency. The equivalent
continuous-time frequency ω is then used as the x-axis variable. Because
H e

j Ts()
w is periodic and has a period 2 ωN, bode plots the response only up to

the Nyquist frequency ωN. If you do not specify a sampling time, bode uses Ts =
1.

• “Dynamic System Models”

See Also
freqresp | nyquist | bodeplot | nichols

 bodemag

1-53

bodemag
Bode magnitude response of LTI models

Syntax

bodemag(sys)

bodemag(sys,{wmin,wmax})

bodemag(sys,w)

bodemag(sys1,sys2,...,sysN,w)

Description

bodemag(sys) plots the magnitude of the frequency response of the “dynamic system
model” sys (Bode plot without the phase diagram). The frequency range and number of
points are chosen automatically.

bodemag(sys,{wmin,wmax}) draws the magnitude plot for frequencies between wmin
and wmax (in rad/TimeUnit, where TimeUnit is the time units of the input dynamic
system, specified in the TimeUnit property of sys).

bodemag(sys,w) uses the user-supplied vector W of frequencies, in rad/TimeUnit, at
which the frequency response is to be evaluated.

bodemag(sys1,sys2,...,sysN,w) shows the frequency response magnitude of
several models sys1,sys2,...,sysN on a single plot. The frequency vector w is optional.
You can also specify a color, line style, and marker for each model. For example:

bodemag(sys1,'r',sys2,'y--',sys3,'gx')

See Also
bode | ltiview

1 Functions — Alphabetical List

1-54

bodeoptions
Create list of Bode plot options

Syntax

P = bodeoptions

P = bodeoptions('cstprefs')

Description

P = bodeoptions returns a default set of plot options for use with the bodeplot. You
can use these options to customize the Bode plot appearance using the command line.
This syntax is useful when you want to write a script to generate plots that look the same
regardless of the preference settings of the MATLAB session in which you run the script.

P = bodeoptions('cstprefs') initializes the plot options with the options you
selected in the Control System Toolbox Preferences Editor. For more information about
the editor, see “Toolbox Preferences Editor” in the User's Guide documentation. This
syntax is useful when you want to change a few plot options but otherwise use your
default preferences. A script that uses this syntax may generate results that look
different when run in a session with different preferences.

The following table summarizes the Bode plot options.

Option Description

Title, XLabel, YLabel Label text and style, specified as a structure with the following fields:

• String — Label text, specified as a string
• FontSize — Default: 8
• FontWeight — Default: 'Normal'
• Font Angle — Default: 'Normal'
• Color — Vector of RGB values ranging from 0 to 1. Default:

[0,0,0]

• Interpreter — Default: 'tex'
TickLabel Tick label style, specified as a structure with the following fields:

 bodeoptions

1-55

Option Description

• FontSize Default: 8
• FontWeight — Default: 'Normal'
• Font Angle — Default: 'Normal'
• Color — Vector of RGB values ranging from 0 to 1. Default:

[0,0,0]

Grid Show or hide the grid
Specified as one of the following strings: 'off' | 'on'
Default: 'off'

XlimMode, YlimMode Axis limit modes. Default: 'auto'
Xlim, Ylim Axes limits, specified as an array of the form [min,max]
IOGrouping Grouping of input-output pairs

Specified as one of the following strings: 'none'
|'inputs'|'output'|'all'
Default: 'none'

InputLabels,
OutputLabels

Input and output label styles

InputVisible,
OutputVisible

Visibility of input and output channels

ConfidenceRegionNumberSDNumber of standard deviations to use to plotting the response confidence
region (identified models only).

Default: 1.

1 Functions — Alphabetical List

1-56

Option Description

FreqUnits Frequency units, specified as one of the following strings:

• 'Hz'

• 'rad/second'

• 'rpm'

• 'kHz'

• 'MHz'

• 'GHz'

• 'rad/nanosecond'

• 'rad/microsecond'

• 'rad/millisecond'

• 'rad/minute'

• 'rad/hour'

• 'rad/day'

• 'rad/week'

• 'rad/month'

• 'rad/year'

• 'cycles/nanosecond'

• 'cycles/microsecond'

• 'cycles/millisecond'

• 'cycles/hour'

• 'cycles/day'

• 'cycles/week'

• 'cycles/month'

• 'cycles/year'

Default: 'rad/s'

You can also specify 'auto' which uses frequency units rad/TimeUnit
relative to system time units specified in the TimeUnit property. For

 bodeoptions

1-57

Option Description

multiple systems with different time units, the units of the first system
are used.

FreqScale Frequency scale
Specified as one of the following strings: 'linear' | 'log'
Default: 'log'

MagUnits Magnitude units
Specified as one of the following strings: 'dB' | 'abs'
Default: 'dB'

MagScale Magnitude scale
Specified as one of the following strings: 'linear' | 'log'
Default: 'linear'

MagVisible Magnitude plot visibility
Specified as one of the following strings: 'on' | 'off'
Default: 'on'

MagLowerLimMode Enables a lower magnitude limit
Specified as one of the following strings: 'auto' | 'manual'
Default: 'auto'

MagLowerLim Specifies the lower magnitude limit
PhaseUnits Phase units

Specified as one of the following strings: 'deg' | 'rad'
Default: 'deg'

PhaseVisible Phase plot visibility
Specified as one of the following strings: 'on' | 'off'
Default: 'on'

PhaseWrapping Enables phase wrapping
Specified as one of the following strings: 'on' | 'off'
Default: 'off'

PhaseMatching Enables phase matching
Specified as one of the following strings: 'on' | 'off'
Default: 'off'

PhaseMatchingFreq Frequency for matching phase
PhaseMatchingValue The value to which phase responses are matched closely

1 Functions — Alphabetical List

1-58

Examples

Create Bode Plot with Custom Settings

Create a Bode plot that suppresses the phase plot and uses frequency units Hz instead
of the default radians/second. Otherwise, the plot uses the settings that are saved in the
toolbox preferences.

First, create an options set based on the toolbox preferences.

opts = bodeoptions('cstprefs');

Change properties of the options set.

opts.PhaseVisible = 'off';

opts.FreqUnits = 'Hz';

Create a plot using the options.

h = bodeplot(tf(1,[1,1]),opts);

 bodeoptions

1-59

Depending on your own toolbox preferences, the plot you obtain might look different from
this plot. Only the properties that you set explicitly, in this example PhaseVisible and
FreqUnits, override the toolbox preferences.

Custom Plot Settings Independent of Preferences

Create a Bode plot that uses 14-point red text for the title. This plot should look the
same, regardless of the preferences of the MATLAB session in which it is generated.

First, create a default options set.

opts = bodeoptions;

Change properties of the options set.

1 Functions — Alphabetical List

1-60

opts.Title.FontSize = 14;

opts.Title.Color = [1 0 0];

opts.FreqUnits = 'Hz';

Create a plot using the options.

h = bodeplot(tf(1,[1,1]),opts);

Because opts begins with a fixed set of options, the plot result is independent of the
toolbox preferences of the MATLAB session.

See Also
bodeplot | getoptions | setoptions | bode

 bodeplot

1-61

bodeplot

Plot Bode frequency response with additional plot customization options

Syntax

h = bodeplot(sys)

bodeplot(sys)

bodeplot(sys1,sys2,...)

bodeplot(AX,...)

bodeplot(..., plotoptions)

bodeplot(sys,w)

Description

h = bodeplot(sys) plot the Bode magnitude and phase of the “dynamic system model”
sys and returns the plot handle h to the plot. You can use this handle to customize the
plot with the getoptions and setoptions commands.

bodeplot(sys) draws the Bode plot of the model sys. The frequency range and number
of points are chosen automatically.

bodeplot(sys1,sys2,...) graphs the Bode response of multiple models sys1,sys2,...
on a single plot. You can specify a color, line style, and marker for each model, as in

bodeplot(sys1,'r',sys2,'y--',sys3,'gx')

bodeplot(AX,...) plots into the axes with handle AX.

bodeplot(..., plotoptions) plots the Bode response with the options specified in
plotoptions. Type

help bodeoptions

for a list of available plot options. See “Match Phase at Specified Frequency.” on
page 1-64 for an example of phase matching using the PhaseMatchingFreq and
PhaseMatchingValue options.

1 Functions — Alphabetical List

1-62

bodeplot(sys,w) draws the Bode plot for frequencies specified by w. When w =
{wmin,wmax}, the Bode plot is drawn for frequencies between wmin and wmax (in rad/
TimeUnit, where TimeUnit is the time units of the input dynamic system, specified in
the TimeUnit property of sys.). When w is a user-supplied vector w of frequencies, in rad/
TimeUnit, the Bode response is drawn for the specified frequencies.

See logspace to generate logarithmically spaced frequency vectors.

Examples

Change Bode Plot Options with Plot Handle

Generate a Bode plot.

sys = rss(5);

h = bodeplot(sys);

 bodeplot

1-63

Change the units to Hz and suppress the phase plot. To do so, edit properties of the plot
handle, h.

setoptions(h,'FreqUnits','Hz','PhaseVisible','off');

1 Functions — Alphabetical List

1-64

The plot automatically updates when you call setoptions.

Match Phase at Specified Frequency.

Create a Bode plot of a dynamic system.

sys = tf(1,[1 1]);

h = bodeplot(sys);

 bodeplot

1-65

Fix the phase at 1 rad/s to 750 degrees. To do so, get the plot properties. Then alter the
properties PhaseMatchingFreq and PhaseMatchingValue to match a phase to a
specified frequency.

p = getoptions(h);

p.PhaseMatching = 'on';

p.PhaseMatchingFreq = 1;

p.PhaseMatchingValue = 750;

Update the plot.

setoptions(h,p);

1 Functions — Alphabetical List

1-66

The first bode plot has a phase of -45 degrees at a frequency of 1 rad/s. Setting the phase
matching options so that at 1 rad/s the phase is near 750 degrees yields the second Bode
plot. Note that, however, the phase can only be -45 + N*360, where N is an integer, and
so the plot is set to the nearest allowable phase, namely 675 degrees (or 2*360 - 45 =
675).

Display Confidence Regions of Identified Models

Compare the frequency responses of identified state-space models of order 2 and 6 along
with their 2 σ confidence regions.

load iddata1

sys1 = n4sid(z1, 2) % discrete-time IDSS model of order 2

 bodeplot

1-67

sys2 = n4sid(z1, 6) % discrete-time IDSS model of order 6

Both models produce about 76% fit to data. However, sys2 shows higher uncertainty in
its frequency response, especially close to Nyquist frequency as shown by the plot:

w = linspace(8,10*pi,256);

h = bodeplot(sys1,sys2,w);

setoptions(h, 'PhaseMatching', 'on', 'ConfidenceRegionNumberSD', 2);

Use the context menu by right-clicking Characteristics > Confidence Region to turn
on the confidence region characteristic.

Frequency Response of Identified Parametric and Nonparametric models

Compare the frequency response of a parametric model, identified from input/output
data, to a nonparametric model identified using the same data.

1 Identify parametric and non-parametric models based on data.

load iddata2 z2;

w = linspace(0,10*pi,128);

sys_np = spa(z2,[],w);

sys_p = tfest(z2,2);

spa and tfest require System Identification Toolbox software. sys_np is a
nonparametric identified model. sys_p is a parametric identified model.

2 Create a Bode plot that includes both systems.

opt = bodeoptions; opt.PhaseMatching = 'on';

bodeplot(sys_np,sys_p,w, opt);

More About

Tips

You can change the properties of your plot, for example the units. For information on the
ways to change properties of your plots, see “Ways to Customize Plots”.

See Also
bodeoptions | getoptions | setoptions | bode

1 Functions — Alphabetical List

1-68

c2d

Convert model from continuous to discrete time

Syntax

sysd = c2d(sys,Ts)

sysd = c2d(sys,Ts,method)

sysd = c2d(sys,Ts,opts)

[sysd,G] = c2d(sys,Ts,method)

[sysd,G] = c2d(sys,Ts,opts)

Description

sysd = c2d(sys,Ts) discretizes the continuous-time “dynamic system model” sys
using zero-order hold on the inputs and a sample time of Ts seconds.

sysd = c2d(sys,Ts,method) discretizes sys using the specified discretization method
method.

sysd = c2d(sys,Ts,opts) discretizes sys using the option set opts, specified using
the c2dOptions command.

[sysd,G] = c2d(sys,Ts,method) returns a matrix, G that maps the continuous
initial conditions x0 and u0 of the state-space model sys to the discrete-time initial state
vector x [0]. method is optional. To specify additional discretization options, use [sysd,
G] = c2d(sys,Ts,opts).

Input Arguments

sys

Continuous-time “dynamic system model” (except frequency response data models).
sys can represent a SISO or MIMO system, except that the 'matched' discretization
method supports SISO systems only.

 c2d

1-69

sys can have input/output or internal time delays; however, the 'matched' and
'impulse' methods do not support state-space models with internal time delays.

The following identified linear systems cannot be discretized directly:

• idgrey models with FcnType is 'c'. Convert to idss model first.
• idproc models. Convert to idtf or idpoly model first.

For the syntax [sysd,G] = c2d(sys,Ts,opts), sys must be a state-space model.

Ts

Sample time.

method

String specifying a discretization method:

• 'zoh' — Zero-order hold (default). Assumes the control inputs are piecewise constant
over the sampling period Ts.

• 'foh' — Triangle approximation (modified first-order hold). Assumes the control
inputs are piecewise linear over the sampling period Ts.

• 'impulse' — Impulse invariant discretization.
• 'tustin' — Bilinear (Tustin) method.
• 'matched' — Zero-pole matching method.

For more information about discretization methods, see “Continuous-Discrete Conversion
Methods”.

opts

Discretization options. Create opts using c2dOptions.

Output Arguments

sysd

Discrete-time model of the same type as the input system sys.

1 Functions — Alphabetical List

1-70

When sys is an identified (IDLTI) model, sysd:

• Includes both measured and noise components of sys. The innovations variance λ of
the continuous-time identified model sys, stored in its NoiseVarianceproperty, is
interpreted as the intensity of the spectral density of the noise spectrum. The noise
variance in sysd is thus λ/Ts.

• Does not include the estimated parameter covariance of sys. If you want to translate
the covariance while discretizing the model, use translatecov.

G

Matrix relating continuous-time initial conditions x0 and u0 of the state-space model sys
to the discrete-time initial state vector x [0], as follows:

x G
x

u
0

0

0

[] = ◊
È

Î
Í

˘

˚
˙

For state-space models with time delays, c2d pads the matrix G with zeroes to account
for additional states introduced by discretizing those delays. See “Continuous-Discrete
Conversion Methods” for a discussion of modeling time delays in discretized systems.

Examples

Discretize a Transfer Function

Discretize the following continuous-time transfer function:

This system has an input delay of 0.3 s. Discretize the system using the triangle (first-
order-hold) approximation with sample time Ts = 0.1 s.

H = tf([1 -1],[1 4 5],'InputDelay', 0.3);

Hd = c2d(H,0.1,'foh');

 c2d

1-71

Compare the step responses of the continuous-time and discretized systems.

step(H,'-',Hd,'--')

Discretize Model with Fractional Delay Asborbed into Coefficients

Discretize the following delayed transfer function using zero-order hold on the input, and
a 10-Hz sampling rate.

1 Functions — Alphabetical List

1-72

h = tf(10,[1 3 10],'iodelay',0.25);

hd = c2d(h, 0.1)

hd =

 0.01187 z^2 + 0.06408 z + 0.009721

 z^(-3) * ----------------------------------

 z^2 - 1.655 z + 0.7408

Sample time: 0.1 seconds

Discrete-time transfer function.

In this example, the discretized model hd has a delay of three sampling periods. The
discretization algorithm absorbs the residual half-period delay into the coefficients of hd.

Compare the step responses of the continuous-time and discretized models.

step(h,'--',hd,'-')

 c2d

1-73

Discretize Model With Approximated Fractional Delay

Discretize a state-space model with time delay, using a Thiran filter to model fractional
delays:

sys = ss(tf([1, 2], [1, 4, 2])); % create a state-space model

sys.InputDelay = 2.7 % add input delay

This command creates a continuous-time state-space model with two states, as the
output shows:

a =

 x1 x2

 x1 -4 -2

1 Functions — Alphabetical List

1-74

 x2 1 0

b =

 u1

 x1 2

 x2 0

c =

 x1 x2

 y1 0.5 1

d =

 u1

 y1 0

Input delays (listed by channel): 2.7

Continuous-time model.

Use c2dOptions to create a set of discretization options, and discretize the model. This
example uses the Tustin discretization method.

opt = c2dOptions('Method', 'tustin', 'FractDelayApproxOrder', 3);

sysd1 = c2d(sys, 1, opt) % 1s sampling time

These commands yield the result

a =

 x1 x2 x3 x4 x5

 x1 -0.4286 -0.5714 -0.00265 0.06954 2.286

 x2 0.2857 0.7143 -0.001325 0.03477 1.143

 x3 0 0 -0.2432 0.1449 -0.1153

 x4 0 0 0.25 0 0

 x5 0 0 0 0.125 0

b =

 u1

 x1 0.002058

 x2 0.001029

 x3 8

 x4 0

 x5 0

c =

 x1 x2 x3 x4 x5

 y1 0.2857 0.7143 -0.001325 0.03477 1.143

 c2d

1-75

d =

 u1

 y1 0.001029

Sampling time: 1

Discrete-time model.

The discretized model now contains three additional states x3, x4, and x5 corresponding
to a third-order Thiran filter. Since the time delay divided by the sampling time is 2.7,
the third-order Thiran filter (FractDelayApproxOrder = 3) can approximate the entire
time delay.

Discretized Identified Model

Discretize an identified, continuous-time transfer function and compare its performance
against a directly estimated discrete-time model

Estimate a continuous-time transfer function and discretize it.

load iddata1

sys1c = tfest(z1,2);

sys1d = c2d(sys1c,0.1,'zoh');

Estimate a second order discrete-time transfer function.

sys2d = tfest(z1,2,'Ts',0.1);

Compare the two models.

compare(z1,sys1d,sys2d)

1 Functions — Alphabetical List

1-76

The two systems are virtually identical.

Build Predictor Model

Discretize an identified state-space model to build a one-step ahead predictor of its
response.

load iddata2

sysc = ssest(z2,4);

sysd = c2d(sysc,0.1,'zoh');

[A,B,C,D,K] = idssdata(sysd);

Predictor = ss(A-K*C,[K B-K*D],C,[0 D],0.1);

The Predictor is a two input model which uses the measured output and input signals
([z1.y z1.u]) to compute the 1-step predicted response of sysc.

 c2d

1-77

More About

Tips

• Use the syntax sysd = c2d(sys,Ts,method) to discretize sys using the default
options for method. To specify additional discretization options, use the syntax sysd
= c2d(sys,Ts,opts).

• To specify the tustin method with frequency prewarping (formerly known as the
'prewarp' method), use the PrewarpFrequency option of c2dOptions.

Algorithms

For information about the algorithms for each c2d conversion method, see “Continuous-
Discrete Conversion Methods”.
• “Dynamic System Models”
• “Discretize a Compensator”
• “Continuous-Discrete Conversion Methods”

See Also
d2c | d2d | c2dOptions | thiran | translatecov

1 Functions — Alphabetical List

1-78

c2dOptions
Create option set for continuous- to discrete-time conversions

Syntax
opts = c2dOptions

opts = c2dOptions('OptionName', OptionValue)

Description
opts = c2dOptions returns the default options for c2d.

opts = c2dOptions('OptionName', OptionValue) accepts one or more comma-
separated name/value pairs that specify options for the c2d command. Specify
OptionName inside single quotes.

Input Arguments

Name-Value Pair Arguments

'Method'

Discretization method, specified as one of the following values:

'zoh' Zero-order hold, where c2d assumes the control inputs are piecewise
constant over the sampling period Ts.

'foh' Triangle approximation (modified first-order hold), where c2d
assumes the control inputs are piecewise linear over the sampling
period Ts. (See [1], p. 228.)

'impulse' Impulse-invariant discretization.
'tustin' Bilinear (Tustin) approximation. By default, c2d discretizes

with no prewarp and rounds any fractional time delays to the
nearest multiple of the sample time. To include prewarp, use the
PrewarpFrequency option. To approximate fractional time delays,
use theFractDelayApproxOrder option.

 c2dOptions

1-79

'matched' Zero-pole matching method. (See [1], p. 224.) By default, c2d
rounds any fractional time delays to the nearest multiple of the
sample time. To approximate fractional time delays, use the
FractDelayApproxOrder option.

Default: 'zoh'

'PrewarpFrequency'

Prewarp frequency for 'tustin' method, specified in rad/TimeUnit, where TimeUnit
is the time units, specified in the TimeUnit property, of the discretized system. Takes
positive scalar values. A value of 0 corresponds to the standard 'tustin' method
without prewarp.

Default: 0

'FractDelayApproxOrder'

Maximum order of the Thiran filter used to approximate fractional delays in the
'tustin' and 'matched' methods. Takes integer values. A value of 0 means that c2d
rounds fractional delays to the nearest integer multiple of the sample time.

Default: 0

Examples

Discretize two models using identical discretization options.

% generate two arbitrary continuous-time state-space models

sys1 = rss(3, 2, 2);

sys2 = rss(4, 4, 1);

Use c2dOptions to create a set of discretization options.

opt = c2dOptions('Method', 'tustin', 'PrewarpFrequency', 3.4);

Then, discretize both models using the option set.

dsys1 = c2d(sys1, 0.1, opt); % 0.1s sampling time

dsys2 = c2d(sys2, 0.2, opt); % 0.2s sampling time

The c2dOptions option set does not include the sampling time Ts. You can use the same
discretization options to discretize systems using a different sampling time.

1 Functions — Alphabetical List

1-80

References

[1] Franklin, G.F., Powell, D.J., and Workman, M.L., Digital Control of Dynamic Systems
(3rd Edition), Prentice Hall, 1997.

See Also
c2d

 canon

1-81

canon

State-space canonical realization

Syntax

csys = canon(sys,type)

[csys,T]= canon(sys,type)

csys = canon(sys,'modal',condt)

Description

csys = canon(sys,type) transforms the linear model sys into a canonical state-space
model csys. The argument type specifies whether csys is in modal or companion form.

[csys,T]= canon(sys,type) also returns the state-coordinate transformation T that
relates the states of the state-space model sys to the states of csys.

csys = canon(sys,'modal',condt) specifies an upper bound condt on the condition
number of the block-diagonalizing transformation.

Input Arguments

sys

Any linear dynamic system model, except for frd models.

type

String specifying the type of canonical form of csys. type can take one of the two following
values:

• 'modal' — convert sys to modal form.
• 'companion' — convert sys to companion form.

1 Functions — Alphabetical List

1-82

condt

Positive scalar value specifying an upper bound on the condition number of the block-
diagonalizing transformation that converts sys to csys. This argument is available only
when type is 'modal'.

Increase condt to reduce the size of the eigenvalue clusters in the A matrix of csys.
Setting condt = Inf diagonalizes A.

Default: 1e8

Output Arguments

csys

State-space (ss) model. csys is a state-space realization of sys in the canonical form
specified by type.

T

Matrix specifying the transformation between the state vector x of the state-space model
sys and the state vector xc of csys:
xc = Tx
.

This argument is available only when sys is state-space model.

Examples

This example uses canon to convert a system having doubled poles and clusters of close
poles to modal canonical form.

Consider the system G having the following transfer function:

G s
s s

s s s s i s i

() =
-() +()

+() +() - +()() - -()()
100

1 1

10 10 0001 1 1
2 2

.

.

 canon

1-83

To create a linear model of this system and convert it to modal canonical form, enter:

G = zpk([1 -1],[0 -10 -10.0001 1+1i 1-1i 1+1i 1-1i],100);

Gc = canon(G,'modal');

The system G has a pair of nearby poles at s = –10 and s = –10.0001. G also has two
complex poles of multiplicity 2 at s = 1 + i and s = 1 – i. As a result, the modal form,
has a block of size 2 for the two poles near s = –10, and a block of size 4 for the complex
eigenvalues. To see this, enter the following command:

Gc.A

ans =

 0 0 0 0 0 0 0

 0 1.0000 1.0000 0 0 0 0

 0 -1.0000 1.0000 2.0548 0 0 0

 0 0 0 1.0000 1.0000 0 0

 0 0 0 -1.0000 1.0000 0 0

 0 0 0 0 0 -10.0000 8.0573

 0 0 0 0 0 0 -10.0001

To separate the two poles near s = –10, you can increase the value of condt. For example:

Gc2 = canon(G,'modal',1e10);

Gc2.A

ans =

 0 0 0 0 0 0 0

 0 1.0000 1.0000 0 0 0 0

 0 -1.0000 1.0000 2.0548 0 0 0

 0 0 0 1.0000 1.0000 0 0

 0 0 0 -1.0000 1.0000 0 0

 0 0 0 0 0 -10.0000 0

 0 0 0 0 0 0 -10.0001

The A matrix of Gc2 includes separate diagonal elements for the poles near s = –10. The
cost of increasing the maximum condition number of A is that the B matrix includes some
large values.

format shortE

Gc2.B

ans =

 3.2000e-001

 -6.5691e-003

 5.4046e-002

1 Functions — Alphabetical List

1-84

 -1.9502e-001

 1.0637e+000

 3.2533e+005

 3.2533e+005

This example estimates a state-space model that is freely parameterized and convert to
companion form after estimation.

load icEngine.mat

z = iddata(y,u,0.04);

FreeModel = n4sid(z,4,'InputDelay',2);

CanonicalModel = canon(FreeModel, 'companion')

Obtain the covariance of the resulting form by running a zero-iteration update to model
parameters.

opt = ssestOptions; opt.SearchOption.MaxIter = 0;

CanonicalModel = ssest(z, CanonicalModel, opt)

Compare frequency response confidence bounds of FreeModel to CanonicalModel.

h = bodeplot(FreeModel, CanonicalModel)

the bounds are identical.

More About

Modal Form

In modal form, A is a block-diagonal matrix. The block size is typically 1-by-1 for
real eigenvalues and 2-by-2 for complex eigenvalues. However, if there are repeated
eigenvalues or clusters of nearby eigenvalues, the block size can be larger.

For example, for a system with eigenvalues (, ,)l s w l1 2± j , the modal A matrix is of the
form

l

s w

w s

l

1

2

0 0 0

0 0

0 0

0 0 0

−

 canon

1-85

Companion Form

In the companion realization, the characteristic polynomial of the system appears
explicitly in the rightmost column of the A matrix. For a system with characteristic
polynomial

p s s s s
n n

n n
() = + + + +−

−a a a1
1

1…

the corresponding companion A matrix is

A

n

n

=

−
− −

−
−

0 0 0

1 0 0 0 1

0 1 0

0

0 1 0

0 0 1

2

1

.. ..

..

.

. .

. .

.. ..

a

a

a

a

: :
: : :

The companion transformation requires that the system be controllable from the first
input. The companion form is poorly conditioned for most state-space computations;
avoid using it when possible.

Algorithms

The canon command uses the bdschur command to convert sys into modal form and
to compute the transformation T. If sys is not a state-space model, the algorithm first
converts it to state space using ss.

The reduction to companion form uses a state similarity transformation based on the
controllability matrix [1].

References

[1] Kailath, T. Linear Systems, Prentice-Hall, 1980.

See Also
ctrb | ctrbf | ss2ss

1 Functions — Alphabetical List

1-86

care
Continuous-time algebraic Riccati equation solution

Syntax

[X,L,G] = care(A,B,Q)

[X,L,G] = care(A,B,Q,R,S,E)

[X,L,G,report] = care(A,B,Q,...)

[X1,X2,D,L] = care(A,B,Q,...,'factor')

Description

[X,L,G] = care(A,B,Q) computes the unique solution X of the continuous-time
algebraic Riccati equation

A X XA XBB X QT T
+ - + = 0

The care function also returns the gain matrix, G R B XE
T

=
-1 .

[X,L,G] = care(A,B,Q,R,S,E) solves the more general Riccati equation

A XE E XA E XB S R B XE S QT T T T T
+ - + + + =

-
() ()

1
0

When omitted, R, S, and E are set to the default values R=I, S=0, and E=I. Along with the
solution X, care returns the gain matrix G R B XE S

T T
= +

-1
() and a vector L of closed-

loop eigenvalues, where

L=eig(A-B*G,E)

[X,L,G,report] = care(A,B,Q,...) returns a diagnosis report with:

• -1 when the associated Hamiltonian pencil has eigenvalues on or very near the
imaginary axis (failure)

• -2 when there is no finite stabilizing solution X

 care

1-87

• The Frobenius norm of the relative residual if X exists and is finite.

This syntax does not issue any error message when X fails to exist.

[X1,X2,D,L] = care(A,B,Q,...,'factor') returns two matrices X1, X2 and a
diagonal scaling matrix D such that X = D*(X2/X1)*D.

The vector L contains the closed-loop eigenvalues. All outputs are empty when the
associated Hamiltonian matrix has eigenvalues on the imaginary axis.

Examples

Example 1

Solve Algebraic Riccati Equation

Given

A B C R=
-È

Î
Í

˘

˚
˙ =

È

Î
Í

˘

˚
˙ = -[] =

3 2

1 1

0

1
1 1 3

you can solve the Riccati equation

A X XA XBR B X C C
T T T

+ - + =
-1

0

by

a = [-3 2;1 1]

b = [0 ; 1]

c = [1 -1]

r = 3

[x,l,g] = care(a,b,c'*c,r)

This yields the solution

x

x =

 0.5895 1.8216

1 Functions — Alphabetical List

1-88

 1.8216 8.8188

You can verify that this solution is indeed stabilizing by comparing the eigenvalues of a
and a-b*g.

[eig(a) eig(a-b*g)]

ans =

 -3.4495 -3.5026

 1.4495 -1.4370

Finally, note that the variable l contains the closed-loop eigenvalues eig(a-b*g).

l

l =

 -3.5026

 -1.4370

Example 2

Solve H-infinity (H
•

)-like Riccati Equation

To solve the H
•

-like Riccati equation

A X XA X B B B B X C C
T T T T

+ + - + =
-

()g
2

1 1 2 2 0

rewrite it in the care format as

A X XA X B B
I

I

B

B

T

B

R

T

T
+ -

-È

Î
Í
Í

˘

˚
˙
˙

È

Î
Í
Í

˘

˚
˙
˙

-

[,]1 2

2
1

1

2

0

0124 34

1 24 34

g
XX C C

T+ = 0

You can now compute the stabilizing solution X by

B = [B1 , B2]

m1 = size(B1,2)

m2 = size(B2,2)

R = [-g^2*eye(m1) zeros(m1,m2) ; zeros(m2,m1) eye(m2)]

 care

1-89

X = care(A,B,C'*C,R)

Limitations

The (,)A B pair must be stabilizable (that is, all unstable modes are controllable). In
addition, the associated Hamiltonian matrix or pencil must have no eigenvalue on the
imaginary axis. Sufficient conditions for this to hold are (,)Q A detectable when S = 0

and R > 0 , or

Q S

S RT

È

Î
Í
Í

˘

˚
˙
˙

> 0

More About

Algorithms

care implements the algorithms described in [1]. It works with the Hamiltonian matrix
when R is well-conditioned and E I= ; otherwise it uses the extended Hamiltonian pencil
and QZ algorithm.

References

[1] Arnold, W.F., III and A.J. Laub, "Generalized Eigenproblem Algorithms and Software
for Algebraic Riccati Equations," Proc. IEEE, 72 (1984), pp. 1746-1754

See Also
dare | lyap

1 Functions — Alphabetical List

1-90

chgFreqUnit

Change frequency units of frequency-response data model

Syntax

sys_new = chgFreqUnit(sys,newfrequnits)

Description

sys_new = chgFreqUnit(sys,newfrequnits) changes units of the frequency points
in sys to newfrequnits. Both Frequency and FrequencyUnit properties of sys adjust so
that the frequency responses of sys and sys_new match.

Input Arguments

sys

Frequency-response data (frd, idfrd, or genfrd) model

newfrequnits

New units of frequency points, specified as one of the following strings:

• 'rad/TimeUnit'

• 'cycles/TimeUnit'

• 'rad/s'

• 'Hz'

• 'kHz'

• 'MHz'

• 'GHz'

• 'rpm'

 chgFreqUnit

1-91

rad/TimeUnit and cycles/TimeUnit express frequency units relative to the system
time units specified in the TimeUnit property.

Default: 'rad/TimeUnit'

Output Arguments

sys_new

Frequency-response data model of the same type as sys with new units of frequency
points. The frequency response of sys_new is same as sys.

Examples

This example shows how to change units of the frequency points in a frequency-response
data model.

1 Create a frequency-response data model.

load AnalyzerData;

sys = frd(resp,freq);

The data file AnalyzerData has column vectors freq and resp. These vectors
contain 256 test frequencies and corresponding complex-valued frequency response
points, respectively. The default frequency units of sys is rad/TimeUnit, where
TimeUnit is the system time units.

2 Change the frequency units.

sys1 = chgFreqUnit(sys,'rpm');

The FrequencyUnit property of sys1 is rpm.
3 Compare the Bode responses of sys and sys1.

bodeplot(sys,'r',sys1,'y--');

legend('sys','sys1')

The magnitude and phase of sys and sys1 match.

1 Functions — Alphabetical List

1-92

4 (Optional) Change the FrequencyUnit property of sys to compare the Bode
response with the original system.

sys2=sys;

sys2.FrequencyUnit = 'rpm';

bodeplot(sys,'r',sys2,'gx');

legend('sys','sys2');

Changing the FrequencyUnit property changes the original system. Therefore,
the Bode responses of sys and sys2 do not match. For example, the original corner
frequency at 2 rad/s changes to 2 rpm (or 0.2 rad/s).

 chgFreqUnit

1-93

More About

Tips

• Use chgFreqUnit to change the units of frequency points without modifying system
behavior.

See Also
chgTimeUnit | frd

Tutorials
• “1”

1.

1 Functions — Alphabetical List

1-94

chgTimeUnit

Change time units of dynamic system

Syntax

sys_new = chgTimeUnit(sys,newtimeunits)

Description

sys_new = chgTimeUnit(sys,newtimeunits) changes the time units of sys to
newtimeunits. The time- and frequency-domain characteristics of sys and sys_new
match.

Input Arguments

sys

“Dynamic system model”

newtimeunits

New time units, specified as one of the following strings:

• 'nanoseconds'

• 'microseconds'

• 'milliseconds'

• 'seconds'

• 'minutes'

• 'hours'

• 'days'

• 'weeks'

 chgTimeUnit

1-95

• 'months'

• 'years'

Default: 'seconds'

Output Arguments

sys_new

“Dynamic system model” of the same type as sys with new time units. The time response
of sys_new is same as sys.

If sys is an identified linear model, both the model parameters as and their minimum
and maximum bounds are scaled to the new time units.

Examples

Change Time Units of Dynamic System Model

Create a transfer function model.

num = [4 2];

den = [1 3 10];

sys = tf(num,den);

By default, the time unit of sys is 'seconds'. Create a new model with the time units
changed to minutes.

sys1 = chgTimeUnit(sys,'minutes');

This command sets the TimeUnit property of sys1 to 'minutes', without changing the
dynamics. To confirm that the dynamics are unchanged, compare the step responses of
sys and sys1.

stepplot(sys,'r',sys1,'y--');

legend('sys','sys1');

1 Functions — Alphabetical List

1-96

The step responses are the same.

If you change the TimeUnit property of the system instead of using chgTimeUnit, the
dynamics of the system do change. To see this, change the TimeUnit property of a copy
of sys and compare the step response with the original system.

sys2 = sys;

sys2.TimeUnit = 'minutes';

stepplot(sys,'r',sys2,'gx');

legend('sys','sys2');

 chgTimeUnit

1-97

The step responses of sys and sys2 do not match. For example, the original rise time of
0.04 seconds changes to 0.04 minutes.

• “Specify Model Time Units”

More About

Tips

• Use chgTimeUnit to change the time units without modifying system behavior.

1 Functions — Alphabetical List

1-98

See Also
chgFreqUnit | tf | zpk | ss | frd | pid

 conj

1-99

conj
Form model with complex conjugate coefficients

Syntax

sysc = conj(sys)

Description

sysc = conj(sys) constructs a complex conjugate model sysc by applying complex
conjugation to all coefficients of the LTI model sys. This function accepts LTI models in
transfer function (TF), zero/pole/gain (ZPK), and state space (SS) formats.

Examples

If sys is the transfer function

(2+i)/(s+i)

then conj(sys) produces the transfer function

(2-i)/(s-i)

This operation is useful for manipulating partial fraction expansions.

See Also
append | ss | tf | zpk

1 Functions — Alphabetical List

1-100

connect
Block diagram interconnections of dynamic systems

Syntax

sysc = connect(sys1,...,sysN,inputs,outputs)

sysc = connect(blksys,connections,inputs,outputs)

sysc = connect(___ ,opts)

Description

sysc = connect(sys1,...,sysN,inputs,outputs) connects the block diagram
elements sys1,...,sysN based on signal names. The block diagram elements sys1,...,sysN
are “dynamic system models”. These models can include summing junctions you create
using sumblk. The connect command interconnects the block diagram elements by
matching the input and output signals you specify in the InputName and OutputName
properties of sys1,...,sysN. The aggregate model sysc is a dynamic system model having
inputs and outputs specified by inputs and outputs respectively.

sysc = connect(blksys,connections,inputs,outputs) uses index-based
interconnection to build sysc out of an aggregate, unconnected model blksys. The matrix
connections specifies how the outputs and inputs of blksys interconnect. For index-
based interconnections, inputs and outputs are index vectors that specify which inputs
and outputs of blksys are the external inputs and outputs of sysc. This syntax is not
recommended.

sysc = connect(___ ,opts) builds the interconnected model using additional
options. You can use opts with the input arguments of either of the previous syntaxes.

Input Arguments

sys1,...,sysN

“Dynamic system models” corresponding to the elements of your block diagram. For
example, the elements of your block diagram can include one or more tf or ss model

 connect

1-101

representing plant dynamics. Block diagram elements can also include a pid or
ltiblock.pid model representing a controller. You can also include one or more
summing junction you create using sumblk. Provide multiple arguments sys1,...,sysN to
represent all of the block diagram elements and summing junctions.

inputs

For name-based interconnection, a string or cell array of strings specifying the inputs
of the aggregate model sysc. The strings in inputs must correspond to entries in the
InputName or OutputName property of one or more of the block diagram elements
sys1,...,sysN.

outputs

For name-based interconnection, a string or cell array of strings specifying the outputs
of the aggregate model sysc. The strings in outputs must correspond to entries in the
OutputName property of one or more of the block diagram elements sys1,...,sysN.

blksys

Unconnected aggregate model. To obtain blksys, use append to join dynamic system
models of the elements of your block diagram. For example, if your block diagram
contains dynamic system models C, G, and S, create blksys with the following command:

blksys = append(C,G,S)

connections

Matrix specifying the connections and summing junctions of the block diagram. Each row
of connections specifies one connection or summing junction in terms of the input vector u
and output vector y of the unconnected aggregate model blksys. For example, the row:

[3 2 0 0]

specifies that y(2) connects into u(3). The row

[7 2 -15 6]

indicates that y(2)-y(15)+y(6) feeds into u(7).

If you do not specify any connection for a particular input or output, connect omits that
input or output from the aggregate model.

1 Functions — Alphabetical List

1-102

opts

Additional options for interconnection, specified as an options set you create with
connectOptions.

Output Arguments

sysc

Interconnected system, returned as either a state-space model or frequency-response
model. The type of model returned depends on the input models. For example:

• Interconnecting numeric LTI models (other than frd models) returns an ss model.
• Interconnecting a numeric LTI model with a Control Design Block returns

a generalized LTI model. For instance, interconnecting a tf model with an
ltiblock.pid Control Design Block returns a genss.

• Interconnecting any model with frequency-response data model returns a frequency
response data model.

By default, connect automatically discards states that do not contribute to the I/O
transfer function from the specified inputs to the specified outputs of the interconnected
model. To retain the unconnected states, set the Simplify option of connectOptions to
false. For example:

opt = connectOptions('Simplify',false);

sysc = connect(sys1,sys2,sys3,'r','y',opt);

Examples

SISO Feedback Loop

Create an aggregate model of the following block diagram from r to y.

 connect

1-103

Create C and G, and name the inputs and outputs.

C = pid(2,1);

C.u = 'e'; C.y = 'u';

G = zpk([],[-1,-1],1);

G.u = 'u'; G.y = 'y';

The notations C.u and C.y are shorthand expressions equivalent to C.InputName and
C.OutputName, respectively. For example, entering C.u = 'e' is equivalent to entering
C.InputName = 'e'. The command sets the InputName property of C to the value 'e'.

Create the summing junction.

Sum = sumblk('e = r - y');

Combine C, G, and the summing junction to create the aggregate model from r to y.

T = connect(G,C,Sum,'r','y');

connect automatically joins inputs and outputs with matching names.

MIMO Feedback Loop

Create the control system of the previous example where G and C are both 2-input, 2-
output models.

C = [pid(2,1),0;0,pid(5,6)];

C.InputName = 'e'; C.OutputName = 'u';

G = ss(-1,[1,2],[1;-1],0);

G.InputName = 'u'; G.OutputName = 'y';

When you specify single names for vector-valued signals, the software automatically
performs vector expansion of the signal names. For example, examine the names of the
inputs to C.

C.InputName

ans =

 'e(1)'

 'e(2)'

Create a 2-input, 2-output summing junction.

Sum = sumblk('e = r-y',2);

1 Functions — Alphabetical List

1-104

sumblk also performs vector expansion of the signal names.

Interconnect the models to obtain the closed-loop system.

T = connect(G,C,Sum,'r','y');

The block diagram elements G, C, and Sum are all 2-input, 2-output models. Therefore,
connect performs the same vector expansion. connect selects all entries of the two-
input signals 'r' and 'y' as inputs and outputs to T, respectively. For example,
examine the input names of T.

T.InputName

ans =

 'r(1)'

 'r(2)'

Index-Based Interconnection

Create an aggregate model of the following block diagram from r to y using index-based
interconnection.

Create C, G, and the unconnected aggregate model blksys.

C = pid(2,1);

G = zpk([],[-1,-1],1);

blksys = append(C,G);

The inputs u(1),u(2) of blksys correspond to the inputs of C and G, respectively. The
outputs w(1),w(2) of blksys correspond to the outputs of C and G, respectively.

Create the matrix connections, which specifies which outputs of blksys connect to
which inputs of blksys.

connections = [2 1; 1 -2];

 connect

1-105

The first row indicates that w(1) connects to u(2); in other words, that the output of
C connects to the input of G. The second row indicates that -w(2) connects to u(1); in
other words, that the negative of the output of G connects to the input of C.

Create the connected aggregate model from r to y.

T = connect(blksys,connections,1,2)

The last two arguments specify the external inputs and outputs in terms of the indices
of blksys. 1 specifies that the external input connects to u(1). The last argument, 2,
specifies that the external output connects from w(2).

More About
• “Multi-Loop Control System”
• “MIMO Control System”
• “MIMO Feedback Loop”

See Also
| append | sumblk | feedback | parallel | series | lft | connectOptions

1 Functions — Alphabetical List

1-106

connectOptions
Options for the connect command

Syntax
opt = connectOptions

opt = connectOptions(Name,Value)

Description
opt = connectOptions returns the default options for connect.

opt = connectOptions(Name,Value) returns an options set with the options
specified by one or more Name,Value pair arguments.

Examples
Retain Unconnected States in Model Interconnection

Use connectOptions to cause the connect command to retain unconnected states in
an interconnected model.

Suppose you have dynamic system models sys1, sys2, and sys3. Combine these
dynamic system models to build an interconnected model with input 'r' and output 'y'.
Set the option to retain states in the model that do not contribute to the dynamics in the
path from 'r' or 'y'.

opt = connectOptions('Simplify',false);

sysc = connect(sys1,sys2,sys3,'r','y',opt);

Input Arguments

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single

 connectOptions

1-107

quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

Example: 'Simplify',false

'Simplify' — Automatic elimination of unconnected states
true (default) | false

Automatic elimination of unconnected states, specified as either true or false.

• true — connect eliminates all states that do not contribute to the I/O transfer
function from the specified inputs to the specified outputs of the interconnected
system.

• false — connect retains unconnected states. This option can be useful, for example,
when you want to compute the interconnected system response from known initial
state values of the components.

Data Types: logical

Output Arguments

opt — Options for connect
connectOptions options set

Options for connect, returned as a connectOptions options set. Use opt as the last
argument to connect when interconnecting models.

See Also
connect

1 Functions — Alphabetical List

1-108

covar
Output and state covariance of system driven by white noise

Syntax

P = covar(sys,W)

[P,Q] = covar(sys,W)

Description

covar calculates the stationary covariance of the output y of an LTI model sys driven by
Gaussian white noise inputs w. This function handles both continuous- and discrete-time
cases.

P = covar(sys,W) returns the steady-state output response covariance

P E yyT= ()

given the noise intensity

E w t w W t

E w k w l W

T

T

kl

(() ()) ()

()

t d t

d

= −

[] [] =

(continuous time)

(disccrete time)

[P,Q] = covar(sys,W) also returns the steady-state state covariance

Q E xxT= ()

when sys is a state-space model (otherwise Q is set to []).

When applied to an N-dimensional LTI array sys, covar returns multidimensional
arrays P, Q such that

P(:,:,i1,...iN) and Q(:,:,i1,...iN) are the covariance matrices for the model
sys(:,:,i1,...iN).

 covar

1-109

Examples

Compute the output response covariance of the discrete SISO system

H z
z

z z

T
s

()
. .

, .= +
+ +

=2 1

0 2 0 5
0 1

2

due to Gaussian white noise of intensity W = 5. Type

sys = tf([2 1],[1 0.2 0.5],0.1);

p = covar(sys,5)

These commands produce the following result.

p =

 30.3167

You can compare this output of covar to simulation results.

randn('seed',0)

w = sqrt(5)*randn(1,1000); % 1000 samples

% Simulate response to w with LSIM:

y = lsim(sys,w);

% Compute covariance of y values

psim = sum(y .* y)/length(w);

This yields

psim =

 32.6269

The two covariance values p and psim do not agree perfectly due to the finite simulation
horizon.

More About

Algorithms

Transfer functions and zero-pole-gain models are first converted to state space with ss.

1 Functions — Alphabetical List

1-110

For continuous-time state-space models

&x Ax Bw

y Cx Dw

= +

= + ,

the steady-state state covariance Q is obtained by solving the Lyapunov equation

AQ QA BWBT T
+ + = 0.

In discrete time, the state covariance Q solves the discrete Lyapunov equation

AQA Q BWBT T
- + = 0.

In both continuous and discrete time, the output response covariance is given by P =
CQCT + DWDT. For unstable systems, P and Q are infinite.

References

[1] Bryson, A.E. and Y.C. Ho, Applied Optimal Control, Hemisphere Publishing, 1975, pp.
458-459.

See Also
dlyap | lyap

 ctrb

1-111

ctrb
Controllability matrix

Syntax

Co = ctrb(sys)

Description

ctrb computes the controllability matrix for state-space systems. For an n-by-n matrix A
and an n-by-m matrix B, ctrb(A,B) returns the controllability matrix

Co B AB A B A B
n=

−2 1
…

where Co has n rows and nm columns.

Co = ctrb(sys) calculates the controllability matrix of the state-space LTI object sys.
This syntax is equivalent to executing

Co = ctrb(sys.A,sys.B)

The system is controllable if Co has full rank n.

Examples

Check if the system with the following data

A =

 1 1

 4 -2

B =

 1 -1

 1 -1

is controllable. Type

1 Functions — Alphabetical List

1-112

Co=ctrb(A,B);

% Number of uncontrollable states

unco=length(A)-rank(Co)

These commands produce the following result.

unco =

 1

Limitations

Estimating the rank of the controllability matrix is ill-conditioned; that is, it is very
sensitive to roundoff errors and errors in the data. An indication of this can be seen from
this simple example.

A B=

 =

1

0 1

1d

d
,

This pair is controllable if d ≠ 0 but if d < eps , where eps is the relative machine
precision. ctrb(A,B) returns

B AB[] =

1 1

d d

which is not full rank. For cases like these, it is better to determine the controllability of
a system using ctrbf.

See Also
ctrbf | obsv

 ctrbf

1-113

ctrbf

Compute controllability staircase form

Syntax

[Abar,Bbar,Cbar,T,k] = ctrbf(A,B,C)

ctrbf(A,B,C,tol)

Description

If the controllability matrix of (A, B) has rank r ≤ n, where n is the size of A, then there
exists a similarity transformation such that

A TAT B TB C CT
T T= = =, ,

where T is unitary, and the transformed system has a staircase form, in which the
uncontrollable modes, if there are any, are in the upper left corner.

A
A

A A
B

B
C C C

uc

c c
nc c=

 =

 = []0 0

21

, ,

where (Ac, Bc) is controllable, all eigenvalues of Auc are uncontrollable, and

C sI A B C sI A Bc c c() ()− = −− −1 1 .

[Abar,Bbar,Cbar,T,k] = ctrbf(A,B,C) decomposes the state-space system
represented by A, B, and C into the controllability staircase form, Abar, Bbar, and Cbar,
described above. T is the similarity transformation matrix and k is a vector of length
n, where n is the order of the system represented by A. Each entry of k represents the
number of controllable states factored out during each step of the transformation matrix
calculation. The number of nonzero elements in k indicates how many iterations were
necessary to calculate T, and sum(k) is the number of states in Ac, the controllable
portion of Abar.

1 Functions — Alphabetical List

1-114

ctrbf(A,B,C,tol) uses the tolerance tol when calculating the controllable/
uncontrollable subspaces. When the tolerance is not specified, it defaults to
10*n*norm(A,1)*eps.

Examples

Compute the controllability staircase form for

A =

 1 1

 4 -2

B =

 1 -1

 1 -1

C =

 1 0

 0 1

and locate the uncontrollable mode.

[Abar,Bbar,Cbar,T,k]=ctrbf(A,B,C)

Abar =

 -3.0000 0

 -3.0000 2.0000

Bbar =

 0.0000 0.0000

 1.4142 -1.4142

Cbar =

 -0.7071 0.7071

 0.7071 0.7071

T =

 -0.7071 0.7071

 0.7071 0.7071

k =

 1 0

 ctrbf

1-115

The decomposed system Abar shows an uncontrollable mode located at -3 and a
controllable mode located at 2.

More About

Algorithms

ctrbf implements the Staircase Algorithm of [1].

References

[1] Rosenbrock, M.M., State-Space and Multivariable Theory, John Wiley, 1970.

See Also
ctrb | minreal

1 Functions — Alphabetical List

1-116

ctrlpref
Set Control System Toolbox preferences

Syntax

ctrlpref

Description

ctrlpref opens a Graphical User Interface (GUI) which allows you to change the
Control System Toolbox™ preferences. Preferences set in this GUI affect future plots
only (existing plots are not altered).

Your preferences are stored to disk (in a system-dependent location) and will be
automatically reloaded in future MATLAB sessions using the Control System Toolbox
software.

See Also
sisotool | ltiview

 d2c

1-117

d2c
Convert model from discrete to continuous time

Syntax

sysc = d2c(sysd)

sysc = d2c(sysd,method)

sysc = d2c(sysd,opts)

[sysc,G] = d2c(sysd,method,opts)

Description

sysc = d2c(sysd) produces a continuous-time model sysc that is equivalent to the
discrete-time “dynamic system model” sysd using zero-order hold on the inputs.

sysc = d2c(sysd,method) uses the specified conversion method method.

sysc = d2c(sysd,opts) converts sysd using the option set opts, specified using the
d2cOptions command.

[sysc,G] = d2c(sysd,method,opts) returns a matrix G that maps the states xd[k]
of the state-space model sysd to the states xc(t) of sysc.

Input Arguments

sysd

Discrete-time “dynamic system model”

You cannot directly use an idgrey model with FcnType='d' with d2c. Convert the
model into idss form first.

Default:

method

String specifying a discrete-to-continuous time conversion method:

1 Functions — Alphabetical List

1-118

• 'zoh' — Zero-order hold on the inputs. Assumes the control inputs are piecewise
constant over the sampling period.

• 'foh' — Linear interpolation of the inputs (modified first-order hold). Assumes the
control inputs are piecewise linear over the sampling period.

• 'tustin' — Bilinear (Tustin) approximation to the derivative.
• 'matched' — Zero-pole matching method of [1] (for SISO systems only).

Default: 'zoh'

opts

Discrete-to-continuous time conversion options, created using d2cOptions.

Output Arguments

sysc

Continuous-time model of the same type as the input system sysd.

When sysd is an identified (IDLTI) model, sysc:

• Includes both the measured and noise components of sysd. If the noise variance is λ
in sysd, then the continuous-time model sysc has an indicated level of noise spectral
density equal to Ts*λ.

• Does not include the estimated parameter covariance of sysd. If you want to translate
the covariance while converting the model, use translatecov.

G

Matrix mapping the states xd[k] of the state-space model sysd to the states xc(t) of
sysc:

x kT G
x k

u k
c s

d() =
[]

[]
È

Î
Í

˘

˚
˙ .

Given an initial condition x0 for sysd and an initial input u0 = u[0], the corresponding
initial condition for sysc (assuming u[k] = 0 for k < 0 is given by:

 d2c

1-119

x G
x

u
c 0

0

0

() =
È

Î
Í

˘

˚
˙.

Examples

Example 1

Consider the following discrete-time transfer function:

H z
z

z z
() =

-

+ +

1

0 3
2

.

Suppose the model has sample time Ts = 0.1 s. You can derive a continuous-time zero-
order-hold equivalent model with the following commands:

H = tf([1 -1], [1 1 0.3], 0.1);

Hc = d2c(H)

Hc =

 121.7 s + 3.026e-12

 s^2 + 12.04 s + 776.7

Continuous-time transfer function.

Discretizing the resulting model Hc with the default zero-order hold method and
sampling time Ts = 0.1s returns the original discrete model H(z):

c2d(Hc,0.1)

ans =

 z - 1

 z^2 + z + 0.3

Sample time: 0.1 seconds

Discrete-time transfer function.

1 Functions — Alphabetical List

1-120

To use the Tustin approximation instead of zero-order hold, type

Hc = d2c(H,'tustin');

As with zero-order hold, the inverse discretization operation

c2d(Hc,0.1,'tustin');

gives back the original H(z).

Example 2

Convert an identified transfer function and compare its performance against a directly
estimated continuous-time model.

load iddata1

sys1d = tfest(z1,2,'Ts',0.1);

sys1c = d2c(sys1d,'zoh');

sys2c = tfest(z1,2);

compare(z1,sys1c,sys2c)

The two systems are virtually identical.

 d2c

1-121

Example 3

Analyze the effect of parameter uncertainty on frequency response across d2c operation
on an identified model.

load iddata1

sysd = tfest(z1, 2, 'Ts', 0.1);

sysc = d2c(sysd, 'zoh');

sys1c has no covariance information. Regenerate it using a zero iteration update with
the same estimation command and estimation data:

opt = tfestOptions;

opt.SearchOption.MaxIter = 0;

sys1c = tfest(z1, sysc, opt);

h = bodeplot(sysd, sysc);

showConfidence(h)

The uncertainties of sysc and sysd are comparable up to the Nyquist frequency.
However, sysc exhibits large uncertainty in the frequency range for which the
estimation data does not provide any information.

If you do not have access to the estimation data, use translatecov which is a Gauss-
approximation formula based translation of covariance across model type conversion
operations.

Limitations

The Tustin approximation is not defined for systems with poles at z = –1 and is ill-
conditioned for systems with poles near z = –1.

The zero-order hold method cannot handle systems with poles at z = 0. In addition, the
'zoh' conversion increases the model order for systems with negative real poles, [2]. The
model order increases because the matrix logarithm maps real negative poles to complex
poles. Single complex poles are not physically meaningful because of their complex time
response.

Instead, to ensure that all complex poles of the continuous model come in conjugate pairs,
d2c replaces negative real poles z = –α with a pair of complex conjugate poles near –α.

1 Functions — Alphabetical List

1-122

The conversion then yields a continuous model with higher order. For example, to convert
the discrete-time transfer function

H z
z

z z z

() =
+

+() + +()
0 2

0 5 0 4
2

.

. .

type:

Ts = 0.1 % sample time 0.1 s

H = zpk(-0.2,-0.5,1,Ts) * tf(1,[1 1 0.4],Ts)

Hc = d2c(H)

These commands produce the following result.
Warning: System order was increased to handle real negative poles.

Zero/pole/gain:

 -33.6556 (s-6.273) (s^2 + 28.29s + 1041)

--

(s^2 + 9.163s + 637.3) (s^2 + 13.86s + 1035)

To convert Hc back to discrete time, type:

c2d(Hc,Ts)

yielding

Zero/pole/gain:

 (z+0.5) (z+0.2)

(z+0.5)^2 (z^2 + z + 0.4)

Sampling time: 0.1

This discrete model coincides with H(z) after canceling the pole/zero pair at z = –0.5.

More About

Tips

• Use the syntax sysc = d2c(sysd,'method') to convert sysd using the default
options for'method'. To specify tustin conversion with a frequency prewarp
(formerly the 'prewarp' method), use the syntax sysc = d2c(sysd,opts). See
the d2cOptions reference page for more information.

 d2c

1-123

Algorithms

d2c performs the 'zoh' conversion in state space, and relies on the matrix logarithm
(see logm in the MATLAB documentation).

See “Continuous-Discrete Conversion Methods” for more details on the conversion
methods.

References

[1] Franklin, G.F., Powell,D.J., and Workman, M.L., Digital Control of Dynamic Systems
(3rd Edition), Prentice Hall, 1997..

[2] Kollár, I., G.F. Franklin, and R. Pintelon, "On the Equivalence of z-domain
and s-domain Models in System Identification," Proceedings of the IEEE
Instrumentation and Measurement Technology Conference, Brussels, Belgium,
June, 1996, Vol. 1, pp. 14-19.

See Also
c2d | d2d | d2cOptions | translatecov | logm

1 Functions — Alphabetical List

1-124

d2cOptions
Create option set for discrete- to continuous-time conversions

Syntax

opts = d2cOptions

opts = d2cOptions(Name,Value)

Description

opts = d2cOptions returns the default options for d2c.

opts = d2cOptions(Name,Value) creates an option set with the options specified by
one or more Name,Value pair arguments.

Input Arguments

Name-Value Pair Arguments

'method'

Discretization method, specified as one of the following values:

'zoh' Zero-order hold, where d2c assumes the control inputs are piecewise
constant over the sampling period Ts.

'foh' Linear interpolation of the inputs (modified first-order hold).
Assumes the control inputs are piecewise linear over the sampling
period.

'tustin' Bilinear (Tustin) approximation. By default, d2c converts with no
prewarp. To include prewarp, use the PrewarpFrequency option.

'matched' Zero-pole matching method. (See [1], p. 224.)

Default: 'zoh'

 d2cOptions

1-125

'PrewarpFrequency'

Prewarp frequency for 'tustin' method, specified in rad/TimeUnit, where TimeUnit
is the time units, specified in the TimeUnit property, of the discrete-time system.
Specify the prewarp frequency as a positive scalar value. A value of 0 corresponds to the
'tustin' method without prewarp.

Default: 0

For additional information about conversion methods, see “Continuous-Discrete
Conversion Methods”.

Examples

Convert a discrete-time model to continuous-time using the 'tustin' method with
frequency prewarping.

Create the discrete-time transfer function

z

z z

+

+ +

1

1
2

hd = tf([1 1], [1 1 1], 0.1); % 0.1s sampling time

To convert to continuous-time, use d2cOptions to create the option set.

opts = d2cOptions('Method', 'tustin', 'PrewarpFrequency', 20);

hc = d2c(hd, opts);

You can use opts to resample additional models using the same options.

References

[1] Franklin, G.F., Powell,D.J., and Workman, M.L., Digital Control of Dynamic Systems
(3rd Edition), Prentice Hall, 1997.

See Also
d2c

1 Functions — Alphabetical List

1-126

d2d
Resample discrete-time model

Syntax

sys1 = d2d(sys, Ts)

sys1 = d2d(sys, Ts, 'method')

sys1 = d2d(sys, Ts, opts)

Description

sys1 = d2d(sys, Ts) resamples the discrete-time dynamic system model sys to
produce an equivalent discrete-time model sys1 with the new sample time Ts (in
seconds), using zero-order hold on the inputs.

sys1 = d2d(sys, Ts, 'method') uses the specified resampling method 'method':

• 'zoh' — Zero-order hold on the inputs
• 'tustin' — Bilinear (Tustin) approximation

sys1 = d2d(sys, Ts, opts) resamples sys using the option set with d2dOptions.

Examples

Example 1

Consider the zero-pole-gain model

H z
z

z
() =

-

-

0 7

0 5

.

.

with sample time 0.1 s. You can resample this model at 0.05 s by typing

H = zpk(0.7,0.5,1,0.1)

 d2d

1-127

H2 = d2d(H,0.05)

Zero/pole/gain:

(z-0.8243)

(z-0.7071)

Sampling time: 0.05

The inverse resampling operation, performed by typing d2d(H2,0.1), yields back the
initial model H(z).

Zero/pole/gain:

(z-0.7)

(z-0.5)

Sampling time: 0.1

Example 2

Suppose you estimates a discrete-time model of a sample time commensurate with the
estimation data (Ts = 0.1 seconds). However, your deployment application demands
a faster sampling frequency (Ts = 0.01 seconds).

load iddata1

sys = oe(z1, [2 2 1]);

sysFast = d2d(sys, 0.01, 'zoh')

bode(sys, sysFast)

More About

Tips

• Use the syntax sys1 = d2d(sys, Ts, 'method') to resample sys using the
default options for'method'. To specify tustin resampling with a frequency
prewarp (formerly the 'prewarp' method), use the syntax sys1 = d2d(sys, Ts,
opts). See the d2dOptions reference page.

• When sys is an identified (IDLTI) model, sys1 does not include the estimated
parameter covariance of sys. If you want to translate the covariance while converting
the model, use translatecov.

1 Functions — Alphabetical List

1-128

See Also
c2d | d2c | d2dOptions | upsample | translatecov

 d2dOptions

1-129

d2dOptions

Create option set for discrete-time resampling

Syntax

opts = d2dOptions

opts = d2dOptions('OptionName', OptionValue)

Description

opts = d2dOptions returns the default options for d2d.

opts = d2dOptions('OptionName', OptionValue) accepts one or more comma-
separated name/value pairs that specify options for the d2d command. Specify
OptionName inside single quotes.

This table summarizes the options that the d2d command supports.

Input Arguments

Name-Value Pair Arguments

'Method'

Discretization method, specified as one of the following values:

'zoh' Zero-order hold, where d2d assumes the control inputs are piecewise
constant over the sampling period Ts.

'tustin' Bilinear (Tustin) approximation. By default, d2d resamples with no
prewarp. To include prewarp, use the PrewarpFrequency option.

Default: 'zoh'

1 Functions — Alphabetical List

1-130

'PrewarpFrequency'

Prewarp frequency for 'tustin' method, specified in rad/TimeUnit, where TimeUnit
is the time units, specified in the TimeUnit property, of the resampled system. Takes
positive scalar values. The prewarp frequency must be smaller than the Nyquist
frequency before and after resampling. A value of 0 corresponds to the standard
'tustin' method without prewarp.

Default: 0

Examples

Resample a discrete-time model using the 'tustin' method with frequency prewarping.

Create the discrete-time transfer function

z

z z

+

+ +

1

1
2

h1 = tf([1 1], [1 1 1], 0.1); % 0.1s sampling time

To resample to a different sampling time, use d2dOptions to create the option set.

opts = d2dOptions('Method', 'tustin', 'PrewarpFrequency', 20);

h2 = d2d(h1, 0.05, opts);

You can use opts to resample additional models using the same options.

See Also
d2d

 damp

1-131

damp
Natural frequency and damping ratio

Syntax

damp(sys)

[Wn,zeta] = damp(sys)

[Wn,zeta,P] = damp(sys)

Description

damp(sys) displays a table of the damping ratio (also called damping factor), natural
frequency, and time constant of the poles of the linear model sys. For a discrete-time
model, the table also includes the magnitude of each pole. Frequencies are expressed in
units of the reciprocal of the TimeUnit property of sys. Time constants are expressed in
the same units as the TimeUnit property of sys.

[Wn,zeta] = damp(sys) returns the natural frequencies, Wn, and damping
ratios,zeta, of the poles of sys.

[Wn,zeta,P] = damp(sys) returns the poles of sys.

Input Arguments

sys

Any linear dynamic system model.

Output Arguments

Wn

Vector containing the natural frequencies of each pole of sys, in order of increasing
frequency. Frequencies are expressed in units of the reciprocal of the TimeUnit property
of sys.

1 Functions — Alphabetical List

1-132

If sys is a discrete-time model with specified sampling time, Wn contains the natural
frequencies of the equivalent continuous-time poles (see “Algorithms” on page 1-133).
If sys has an unspecified sampling time (Ts = -1), then the software uses Ts = 1 and
calculates Wn accordingly.

zeta

Vector containing the damping ratios of each pole of sys, in the same order as Wn.

If sys is a discrete-time model with specified sampling time, zeta contains the damping
ratios of the equivalent continuous-time poles (see “Algorithms” on page 1-133). If
sys has an unspecified sampling time (Ts = -1), then the software uses Ts = 1 and
calculates zeta accordingly.

P

Vector containing the poles of sys, in order of increasing natural frequency. P is the same
as the output of pole(sys), except for the order.

Examples

Natural Frequency, Damping Ratio, and Poles of Continuous-Time System

Calculate the natural frequency, damping ratio, time constant, and poles of the
continuous-time transfer function:

H s
s s

s s

() .=

+ +

+ +

2 5 1

2 3

2

2

H = tf([2 5 1],[1 2 3]);

Display the natural frequencies, damping ratios, time constants, and poles of H.

damp(H)

 Pole Damping Frequency Time Constant

 (rad/seconds) (seconds)

 -1.00e+00 + 1.41e+00i 5.77e-01 1.73e+00 1.00e+00

 -1.00e+00 - 1.41e+00i 5.77e-01 1.73e+00 1.00e+00

 damp

1-133

Obtain vectors containing the natural frequencies and damping ratios of the poles.

[Wn,zeta] = damp(H);

Calculate the associated time constants.

tau = 1./(zeta.*Wn);

Natural Frequency, Damping Ratio, and Poles of Discrete-Time System

Calculate the natural frequency, damping ratio, time constant, and poles of a discrete-
time transfer function.

H = tf([5 3 1],[1 6 4 4],0.01);

Display information about the poles of H.

damp(H)

 Pole Magnitude Damping Frequency Time Constant

 (rad/seconds) (seconds)

 -3.02e-01 + 8.06e-01i 8.61e-01 7.74e-02 1.93e+02 6.68e-02

 -3.02e-01 - 8.06e-01i 8.61e-01 7.74e-02 1.93e+02 6.68e-02

 -5.40e+00 5.40e+00 -4.73e-01 3.57e+02 -5.93e-03

The Magnitude column displays the discrete-time pole magnitudes. The Damping,
Frequency, and Time Constant columns display values calculated using the
equivalent continuous-time poles.

Obtain vectors containing the natural frequencies and damping ratios of the poles.

[Wn,zeta] = damp(H);

Calculate the associated time constants.

tau = 1./(zeta.*Wn);

More About

Algorithms

The natural frequency, time constant, and damping ratio of the system poles are defined
in the following table:

1 Functions — Alphabetical List

1-134

 Continuous Time Discrete Time with Sample Time
Ts

Pole Location s z

Equivalent Continuous-
Time Pole

Not applicable
s

ln z

T
s

=

()

Natural Frequency
w

n
s=

w
n

s

s
ln z

T
= =

()

Damping Ratio z = - –cos s() z = - – = - –cos s cos ln z() (())

Time Constant
t

w z
=

1

n

t
w z

=
1

n

See Also
eig | esort | dsort | pole | pzmap | zero

 dare

1-135

dare
Solve discrete-time algebraic Riccati equations (DAREs)

Syntax

[X,L,G] = dare(A,B,Q,R)

[X,L,G] = dare(A,B,Q,R,S,E)

[X,L,G,report] = dare(A,B,Q,...)

[X1,X2,L,report] = dare(A,B,Q,...,'factor')

Description

[X,L,G] = dare(A,B,Q,R) computes the unique stabilizing solution X of the
discrete-time algebraic Riccati equation

A XA X A XB B XB R B XA QT T T T
- - + + =

-
()

1
0

The dare function also returns the gain matrix, G B XB R B XA
T T

= +
-

()
1 , and the vector

L of closed loop eigenvalues, where

L=eig(A-B*G,E)

[X,L,G] = dare(A,B,Q,R,S,E) solves the more general discrete-time algebraic
Riccati equation,

A XA E XE A XB S B XB R B XA S QT T T T T T
- - + + + + =

-
()() ()

1
0

or, equivalently, if R is nonsingular,

E XE F XF F XB B XB R B XF Q SR ST T T T T T
= - + + -

- -
()

1 1

where F A BR S
T

= -
-1 . When omitted, R, S, and E are set to the default values R=I,

S=0, and E=I.

1 Functions — Alphabetical List

1-136

The dare function returns the corresponding gain matrix
G B XB R B XA S

T T T
= + +

-
() ()

1

and a vector L of closed-loop eigenvalues, where

L= eig(A-B*G,E)

[X,L,G,report] = dare(A,B,Q,...) returns a diagnosis report with value:

• -1 when the associated symplectic pencil has eigenvalues on or very near the unit
circle

• -2 when there is no finite stabilizing solution X
• The Frobenius norm if X exists and is finite

[X1,X2,L,report] = dare(A,B,Q,...,'factor') returns two matrices, X1 and X2,
and a diagonal scaling matrix D such that X = D*(X2/X1)*D. The vector L contains the
closed-loop eigenvalues. All outputs are empty when the associated Symplectic matrix
has eigenvalues on the unit circle.

Limitations

The (A, B) pair must be stabilizable (that is, all eigenvalues of A outside the unit
disk must be controllable). In addition, the associated symplectic pencil must have no
eigenvalue on the unit circle. Sufficient conditions for this to hold are (Q, A) detectable
when S = 0 and R > 0, or

Q S

S RT

> 0

More About

Algorithms

dare implements the algorithms described in [1]. It uses the QZ algorithm to deflate the
extended symplectic pencil and compute its stable invariant subspace.

 dare

1-137

References

[1] Arnold, W.F., III and A.J. Laub, "Generalized Eigenproblem Algorithms and Software
for Algebraic Riccati Equations," Proc. IEEE, 72 (1984), pp. 1746-1754.

See Also
care | dlyap | gdare

1 Functions — Alphabetical List

1-138

db2mag
Convert decibels (dB) to magnitude

Syntax

y = db2mag(ydb)

Description

y = db2mag(ydb) returns the corresponding magnitude y for a given decibel (dB)
value ydb . The relationship between magnitude and decibels is ydb y= *20 10log () .

See Also
mag2db

 dcgain

1-139

dcgain
Low-frequency (DC) gain of LTI system

Syntax

k = dcgain(sys)

Description

k = dcgain(sys) computes the DC gain k of the LTI model sys.

Continuous Time

The continuous-time DC gain is the transfer function value at the frequency s = 0. For
state-space models with matrices (A, B, C, D), this value is
K = D – CA–1B

Discrete Time

The discrete-time DC gain is the transfer function value at z = 1. For state-space models
with matrices (A, B, C, D), this value is
K = D + C (I – A)–1B

Examples

Example 1

To compute the DC gain of the MIMO transfer function

H s

s

s s

s

s

s

() =

-

+ +

+

+

-

È

Î

Í
Í
Í
Í

˘

˚

˙
˙
˙
˙

1
1

3

1

1

2

3

2

1 Functions — Alphabetical List

1-140

type

H = [1 tf([1 -1],[1 1 3]) ; tf(1,[1 1]) tf([1 2],[1 -3])];

dcgain(H)

to get the result:

ans =

 1.0000 -0.3333

 1.0000 -0.6667

Example 2

To compute the DC gain of an identified process model, type;

load iddata1

sys = idproc('p1d');

syse = procest(z1, sys)

dcgain(syse)

The DC gain is stored same as syse.Kp.

More About

Tips

The DC gain is infinite for systems with integrators.

See Also
norm | evalfr

 delay2z

1-141

delay2z
Replace delays of discrete-time TF, SS, or ZPK models by poles at z=0, or replace delays
of FRD models by phase shift

Note: delay2z has been removed. Use absorbDelay instead.

1 Functions — Alphabetical List

1-142

delayss
Create state-space models with delayed inputs, outputs, and states

Syntax

sys=delayss(A,B,C,D,delayterms)

sys=delayss(A,B,C,D,ts,delayterms)

Description

sys=delayss(A,B,C,D,delayterms)constructs a continuous-time state-space model
of the form:

dx

dt
Ax t Bu t A x t t B u t t

y t Cx t Du t

j j j j

j

N

= + + - + -

= +

=

Â() () (() ())

() () (

1

)) (() ())+ - + -
=

Â C x t t D u t tj j j j

j

N

1

where tj, j=1,..,N are time delays expressed in seconds. delayterms is a struct array
with fields delay, a, b, c, d where the fields of delayterms(j) contain the values of tj,
Aj, Bj, Cj, and Dj, respectively. The resulting model sys is a state-space (SS) model with
internal delays.

sys=delayss(A,B,C,D,ts,delayterms)constructs the discrete-time counterpart:

x k Ax k Bu k A x k n B u k n

y k Cx k Du

j j j j

j

N

[] [] [] { [] []}

[] []

+ = + + - + -

= +

=

Â1
1

[[] { [] []}k C x k n D u k nj j j j

j

N

+ - + -
=

Â
1

where Nj, j=1,..,N are time delays expressed as integer multiples of the sampling period
ts.

 delayss

1-143

Examples

To create the model:

dx

dt
x t x t u t

y t x t u t

= - - + -

= - +

() (.) (.)

() (.) ()

1 2 2 0 5

0 5

type

DelayT(1) = struct('delay',0.5,'a',0,'b',2,'c',1,'d',0);

DelayT(2) = struct('delay',1.2,'a',-1,'b',0,'c',0,'d',0);

sys = delayss(1,0,0,1,DelayT)

a =

 x1

 x1 0

b =

 u1

 x1 2

c =

 x1

 y1 1

d =

 u1

 y1 1

(values computed with all internal delays set to zero)

Internal delays: 0.5 0.5 1.2

Continuous-time model.

See Also
getdelaymodel | ss

1 Functions — Alphabetical List

1-144

dlqr
Linear-quadratic (LQ) state-feedback regulator for discrete-time state-space system

Syntax

[K,S,e] = dlqr(A,B,Q,R,N)

Description

[K,S,e] = dlqr(A,B,Q,R,N) calculates the optimal gain matrix K such that the
state-feedback law

u n Kx n[] = − []

minimizes the quadratic cost function

J u x n Qx n u n Ru n x n Nu n
T T T

n

() ()= [] [] + [] [] + [] []
=

∞

∑ 2

1

for the discrete-time state-space mode

x n Ax n Bu n+[] = []+ []1

The default value N=0 is assumed when N is omitted.

In addition to the state-feedback gain K, dlqr returns the infinite horizon solution S of
the associated discrete-time Riccati equation

A SA S A SB N B SB R B SA N QT T T T T− − + + + + =−
()() ()

1
0

and the closed-loop eigenvalues e = eig(A-B*K). Note that K is derived from S by

K B SB R B SA N
T T T= + +−

() ()
1

 dlqr

1-145

Limitations

The problem data must satisfy:

• The pair (A, B) is stabilizable.
• R > 0 and Q − NR–1NT ≥ 0
• (Q − NR–1NT, A − BR–1NT) has no unobservable mode on the unit circle.

See Also
dare | lqgreg | lqr | lqrd | lqry

1 Functions — Alphabetical List

1-146

dlyap
Solve discrete-time Lyapunov equations

Syntax

X = dlyap(A,Q)

X = dlyap(A,B,C)

X = dlyap(A,Q,[],E)

Description

X = dlyap(A,Q) solves the discrete-time Lyapunov equation AXAT − X + Q = 0,

where A and Q are n-by-n matrices.

The solution X is symmetric when Q is symmetric, and positive definite when Q is
positive definite and A has all its eigenvalues inside the unit disk.

X = dlyap(A,B,C) solves the Sylvester equation AXB – X + C = 0,

where A, B, and C must have compatible dimensions but need not be square.

X = dlyap(A,Q,[],E) solves the generalized discrete-time Lyapunov equation AXAT –
EXET + Q = 0,

where Q is a symmetric matrix. The empty square brackets, [], are mandatory. If you
place any values inside them, the function will error out.

Diagnostics

The discrete-time Lyapunov equation has a (unique) solution if the eigenvalues α1, α2, …,
αN of A satisfy αiαj ≠ 1 for all (i, j).

If this condition is violated, dlyap produces the error message

Solution does not exist or is not unique.

 dlyap

1-147

More About

Algorithms

dlyap uses SLICOT routines SB03MD and SG03AD for Lyapunov equations and
SB04QD (SLICOT) for Sylvester equations.

References

[1] Barraud, A.Y., “A numerical algorithm to solve A XA - X = Q,” IEEE Trans. Auto.
Contr., AC-22, pp. 883-885, 1977.

[2] Bartels, R.H. and G.W. Stewart, "Solution of the Matrix Equation AX + XB = C,"
Comm. of the ACM, Vol. 15, No. 9, 1972.

[3] Hammarling, S.J., “Numerical solution of the stable, non-negative definite Lyapunov
equation,” IMA J. Num. Anal., Vol. 2, pp. 303-325, 1982.

[4] Higham, N.J., ”FORTRAN codes for estimating the one-norm of a real or complex
matrix, with applications to condition estimation,” A.C.M. Trans. Math. Soft.,
Vol. 14, No. 4, pp. 381-396, 1988.

[5] Penzl, T., ”Numerical solution of generalized Lyapunov equations,” Advances in
Comp. Math., Vol. 8, pp. 33-48, 1998.

[6] Golub, G.H., Nash, S. and Van Loan, C.F. “A Hessenberg-Schur method for the
problem AX + XB = C,” IEEE Trans. Auto. Contr., AC-24, pp. 909-913, 1979.

[7] Sima, V. C, “Algorithms for Linear-quadratic Optimization,” Marcel Dekker, Inc., New
York, 1996.

See Also
covar | lyap

1 Functions — Alphabetical List

1-148

dlyapchol
Square-root solver for discrete-time Lyapunov equations

Syntax

R = dlyapchol(A,B)

X = dlyapchol(A,B,E)

Description

R = dlyapchol(A,B) computes a Cholesky factorization X = R'*R of the solution X to
the Lyapunov matrix equation:

A*X*A'- X + B*B' = 0

All eigenvalues of A matrix must lie in the open unit disk for R to exist.

X = dlyapchol(A,B,E) computes a Cholesky factorization X = R'*R of X solving the
Sylvester equation

A*X*A' - E*X*E' + B*B' = 0

All generalized eigenvalues of (A,E) must lie in the open unit disk for R to exist.

More About

Algorithms

dlyapchol uses SLICOT routines SB03OD and SG03BD.

References

[1] Bartels, R.H. and G.W. Stewart, "Solution of the Matrix Equation AX + XB = C,"
Comm. of the ACM, Vol. 15, No. 9, 1972.

 dlyapchol

1-149

[2] Hammarling, S.J., “Numerical solution of the stable, non-negative definite Lyapunov
equation,” IMA J. Num. Anal., Vol. 2, pp. 303-325, 1982.

[3] Penzl, T., ”Numerical solution of generalized Lyapunov equations,” Advances in
Comp. Math., Vol. 8, pp. 33-48, 1998.

See Also
dlyap | lyapchol

1 Functions — Alphabetical List

1-150

drss
Generate random discrete test model

Syntax

sys = drss(n)

drss(n,p)

drss(n,p,m)

drss(n,p,m,s1,...sn)

Description

sys = drss(n) generates an n-th order model with one input and one output, and
returns the model in the state-space object sys. The poles of sys are random and stable
with the possible exception of poles at z = 1 (integrators).

drss(n,p) generates an n-th order model with one input and p outputs.

drss(n,p,m) generates an n-th order model with p outputs and m inputs.

drss(n,p,m,s1,...sn) generates a s1-by-sn array of n-th order models with m inputs
and p outputs.

In all cases, the discrete-time state-space model or array returned by drss has an
unspecified sampling time. To generate transfer function or zero-pole-gain systems,
convert sys using tf or zpk.

Examples

Generate a discrete LTI system with three states, four outputs, and two inputs.

sys = drss(3,4,2)

a =

 x1 x2 x3

 x1 0.4766 0.1102 -0.7222

 drss

1-151

 x2 0.1102 0.9115 0.1628

 x3 -0.7222 0.1628 -0.202

b =

 u1 u2

 x1 -0.4326 0.2877

 x2 -0 -0

 x3 0 1.191

c =

 x1 x2 x3

 y1 1.189 -0.1867 -0

 y2 -0.03763 0.7258 0.1139

 y3 0.3273 -0.5883 1.067

 y4 0.1746 2.183 0

d =

 u1 u2

 y1 -0.09565 0

 y2 -0.8323 1.624

 y3 0.2944 -0.6918

 y4 -0 0.858

Sampling time: unspecified

Discrete-time model.

See Also
rss | tf | zpk

1 Functions — Alphabetical List

1-152

dsort
Sort discrete-time poles by magnitude

Syntax

dsort

[s,ndx] = dsort(p)

Description

dsort sorts the discrete-time poles contained in the vector p in descending order by
magnitude. Unstable poles appear first.

When called with one lefthand argument, dsort returns the sorted poles in s.

[s,ndx] = dsort(p) also returns the vector ndx containing the indices used in the
sort.

Examples

Sort the following discrete poles.

p =

 -0.2410 + 0.5573i

 -0.2410 - 0.5573i

 0.1503

 -0.0972

 -0.2590

s = dsort(p)

s =

 -0.2410 + 0.5573i

 -0.2410 - 0.5573i

 -0.2590

 0.1503

 -0.0972

 dsort

1-153

Limitations

The poles in the vector p must appear in complex conjugate pairs.

See Also
eig | esort | sort | pole | pzmap | zero

1 Functions — Alphabetical List

1-154

dss
Create descriptor state-space models

Syntax

sys = dss(A,B,C,D,E)

sys = dss(A,B,C,D,E,Ts)

sys = dss(A,B,C,D,E,ltisys)

Description

sys = dss(A,B,C,D,E) creates the continuous-time descriptor state-space model

E
dx

dt
Ax Bu

y Cx Du

= +

= +

The output sys is an SS model storing the model data (see “State-Space Models”). Note
that ss produces the same type of object. If the matrix D = 0, you can simply set d to the
scalar 0 (zero).

sys = dss(A,B,C,D,E,Ts) creates the discrete-time descriptor model

Ex n Ax n Bu n

y n Cx n Du n

+[] = +

= +

1 [] []

[] [] []

with sample time Ts (in seconds).

sys = dss(A,B,C,D,E,ltisys) creates a descriptor model with properties inherited
from the LTI model ltisys (including the sample time).

Any of the previous syntaxes can be followed by property name/property value pairs

'Property',Value

 dss

1-155

Each pair specifies a particular LTI property of the model, for example, the input names
or some notes on the model history. See set and the example below for details.

Examples

The command
sys = dss(1,2,3,4,5,'inputdelay',0.1,'inputname','voltage',...

 'notes','Just an example');

creates the model

5 2

3 4

&x x u

y x u

= +

= +

with a 0.1 second input delay. The input is labeled 'voltage', and a note is attached to
tell you that this is just an example.

See Also
dssdata | get | set | ss

1 Functions — Alphabetical List

1-156

dssdata
Extract descriptor state-space data

Syntax

[A,B,C,D,E] = dssdata(sys)

[A,B,C,D,E,Ts] = dssdata(sys)

Description

[A,B,C,D,E] = dssdata(sys) returns the values of the A, B, C, D, and E matrices
for the descriptor state-space model sys (see dss). dssdata equals ssdata for regular
state-space models (i.e., when E=I).

If sys has internal delays, A, B, C, D are obtained by first setting all internal delays to
zero (creating a zero-order Padé approximation). For some systems, setting delays to zero
creates singular algebraic loops, which result in either improper or ill-defined, zero-delay
approximations. For these systems, dssdata cannot display the matrices and returns an
error. This error does not imply a problem with the model sys itself.

[A,B,C,D,E,Ts] = dssdata(sys) also returns the sample time Ts.

You can access other properties of sys using get or direct structure-like referencing (e.g.,
sys.Ts).

For arrays of SS models with variable order, use the syntax

[A,B,C,D,E] = dssdata(sys,'cell')

to extract the state-space matrices of each model as separate cells in the cell arrays A, B,
C, D, and E.

See Also
dss | get | getdelaymodel | ssdata

 esort

1-157

esort
Sort continuous-time poles by real part

Syntax

s = esort(p)

[s,ndx] = esort(p)

Description

esort sorts the continuous-time poles contained in the vector p by real part. Unstable
eigenvalues appear first and the remaining poles are ordered by decreasing real parts.

When called with one left-hand argument, s = esort(p) returns the sorted eigenvalues
in s.

[s,ndx] = esort(p) returns the additional argument ndx, a vector containing the
indices used in the sort.

Examples

Sort the following continuous eigenvalues.

p

p =

 -0.2410+ 0.5573i

 -0.2410- 0.5573i

 0.1503

 -0.0972

 -0.2590

esort(p)

ans =

 0.1503

 -0.0972

 -0.2410+ 0.5573i

1 Functions — Alphabetical List

1-158

 -0.2410- 0.5573i

 -0.2590

Limitations

The eigenvalues in the vector p must appear in complex conjugate pairs.

See Also
dsort | sort | eig | pole | pzmap | zero

 estim

1-159

estim

Form state estimator given estimator gain

Syntax

est = estim(sys,L)

est = estim(sys,L,sensors,known)

Description

est = estim(sys,L) produces a state/output estimator est given the plant state-
space model sys and the estimator gain L. All inputs w of sys are assumed stochastic
(process and/or measurement noise), and all outputs y are measured. The estimator est
is returned in state-space form (SS object).

For a continuous-time plant sys with equations

&x Ax Bw

y Cx Dw

= +

= +

estim uses the following equations to generate a plant output estimate ŷ and a state
estimate x̂ , which are estimates of y(t)=C and x(t), respectively:

ˆ ˆ (ˆ)

ˆ

ˆ
ˆ

&x Ax L y Cx

y

x

C

I
x

= + -

È

Î
Í

˘

˚
˙ =

È

Î
Í

˘

˚
˙

For a discrete-time plant sys with the following equations:

x n Ax n Bw n

y n Cx n Dw n

[] [] []

[] [] []

+ = +

= +

1

1 Functions — Alphabetical List

1-160

estim uses estimator equations similar to those for continuous-time to generate a plant
output estimate y n n[|]-1 and a state estimate x n n[|]-1 , which are estimates of y[n]
and x[n], respectively. These estimates are based on past measurements up to y[n-1].

est = estim(sys,L,sensors,known) handles more general plants sys with both
known (deterministic) inputs u and stochastic inputs w, and both measured outputs y
and nonmeasured outputs z.

&x Ax B w B u

z

y

C

C
x

D

D
w

D

D

= + +

È

Î
Í

˘

˚
˙ =

È

Î
Í

˘

˚
˙ +

È

Î
Í

˘

˚
˙ +

È

Î
Í

˘

1 2

1

2

11

21

12

22 ˚̊
˙ u

The index vectors sensors and known specify which outputs of sys are measured (y),
and which inputs of sys are known (u). The resulting estimator est, found using the
following equations, uses both u and y to produce the output and state estimates.

ˆ ˆ (ˆ)

ˆ

ˆ
ˆ

&x Ax B u L y C x D u

y

x

C

I
x

D

= + + - -

È

Î
Í

˘

˚
˙ =

È

Î
Í

˘

˚
˙ +

È

Î
Í

˘

˚

2 2 22

2 22

0
˙̇ u

Examples

Consider a state-space model sys with seven outputs and four inputs. Suppose you
designed a Kalman gain matrix L using outputs 4, 7, and 1 of the plant as sensor
measurements and inputs 1, 4, and 3 of the plant as known (deterministic) inputs. You
can then form the Kalman estimator by

sensors = [4,7,1];

known = [1,4,3];

est = estim(sys,L,sensors,known)

 estim

1-161

See the function kalman for direct Kalman estimator design.

More About

Tips

You can use the functions place (pole placement) or kalman (Kalman filtering) to design
an adequate estimator gain L. Note that the estimator poles (eigenvalues of A-LC) should
be faster than the plant dynamics (eigenvalues of A) to ensure accurate estimation.

See Also
kalman | ss | ssest | predict | place | reg | kalmd | lqgreg

1 Functions — Alphabetical List

1-162

evalfr
Evaluate frequency response at given frequency

Syntax

frsp = evalfr(sys,f)

Description

frsp = evalfr(sys,f) evaluates the transfer function of the TF, SS, or ZPK model
sys at the complex number f. For state-space models with data (A, B, C, D), the result is
H(f) = D + C (fI – A)–1B

evalfr is a simplified version of freqresp meant for quick evaluation of the response
at a single point. Use freqresp to compute the frequency response over a set of
frequencies.

Examples

Example 1

To evaluate the discrete-time transfer function

H z
z

z z
() =

-

+ +

1

1
2

at z = 1 + j, type

H = tf([1 -1],[1 1 1],-1);

z = 1+j;

evalfr(H,z)

to get the result:

ans =

 evalfr

1-163

 2.3077e-01 + 1.5385e-01i

Example 2

To evaluate the frequency response of a continuous-time IDTF model at frequency w =
0.1 rad/s, type:

sys = idtf(1,[1 2 1]);

w = 0.1;

s = 1j*w;

evalfr(sys, s)

The result is same as freqresp(sys, w).

Limitations

The response is not finite when f is a pole of sys.

See Also
freqresp | bode | sigma

1 Functions — Alphabetical List

1-164

lti/exp
Create pure continuous-time delays

Syntax

d = exp(tau,s)

Description

d = exp(tau,s) creates pure continuous-time delays. The transfer function of a pure
delay tau is:

 d(s) = exp(-tau*s)

You can specify this transfer function using exp.

s = zpk('s')

d = exp(-tau*s)

More generally, given a 2D array M,

s = zpk('s')

D = exp(-M*s)

creates an array D of pure delays where
D(i,j) = exp(–M(i,j)s).

All entries of M should be non negative for causality.

See Also
zpk | tf

 fcat

1-165

fcat
Concatenate FRD models along frequency dimension

Syntax

sys = fcat(sys1,sys2,...)

Description

sys = fcat(sys1,sys2,...) takes two or more frd models and merges their
frequency responses into a single frd model sys. The resulting frequency vector is sorted
by increasing frequency. The frequency vectors of sys1, sys2,... should not intersect.
If the frequency vectors do intersect, use fdel to remove intersecting data from one or
more of the models.

See Also
fselect | interp | fdel | frd

1 Functions — Alphabetical List

1-166

fdel
Delete specified data from frequency response data (FRD) models

Syntax

sysout = fdel(sys, freq)

Description

sysout = fdel(sys, freq) removes from the frd model sys the data nearest to the
frequency values specified in the vector freq.

Input Arguments

sys

frd model.

freq

Vector of frequency values.

Output Arguments

sysout

frd model containing the data remaining in sys after removing the frequency points
closest to the entries of freq.

Examples

Remove selected data from a frd model. In this example, first obtain an frd model:

 fdel

1-167

sys = frd(tf([1],[1 1]), logspace(0,1,10))

 Frequency(rad/s) Response

 ---------------- --------

 1.0000 0.5000 - 0.5000i

 1.2915 0.3748 - 0.4841i

 1.6681 0.2644 - 0.4410i

 2.1544 0.1773 - 0.3819i

 2.7826 0.1144 - 0.3183i

 3.5938 0.0719 - 0.2583i

 4.6416 0.0444 - 0.2059i

 5.9948 0.0271 - 0.1623i

 7.7426 0.0164 - 0.1270i

 10.0000 0.0099 - 0.0990i

Continuous-time frequency response.

The following commands remove the data nearest 2, 3.5, and 6 rad/s from sys.

freq = [2, 3.5, 6];

sysout = fdel(sys, freq)

 Frequency(rad/s) Response

 ---------------- --------

 1.0000 0.5000 - 0.5000i

 1.2915 0.3748 - 0.4841i

 1.6681 0.2644 - 0.4410i

 2.7826 0.1144 - 0.3183i

 4.6416 0.0444 - 0.2059i

 7.7426 0.0164 - 0.1270i

 10.0000 0.0099 - 0.0990i

Continuous-time frequency response.

You do not have to specify the exact frequency of the data to remove. fdel removes the
data nearest to the specified frequencies.

More About

Tips

• Use fdel to remove unwanted data (for example, outlier points) at specified
frequencies.

1 Functions — Alphabetical List

1-168

• Use fdel to remove data at intersecting frequencies from frd models before merging
them with fcat. fcat produces an error when you attempt to merge frd models that
have intersecting frequency data.

• To remove data from an frd model within a range of frequencies, use fselect.

See Also
fcat | fselect | frd

 feedback

1-169

feedback
Feedback connection of two models

Syntax

sys = feedback(sys1,sys2)

Description

sys = feedback(sys1,sys2) returns a model object sys for the negative feedback
interconnection of model objects sys1 and sys2.

The closed-loop model sys has u as input vector and y as output vector. The models
sys1 and sys2 must be both continuous or both discrete with identical sample times.
Precedence rules are used to determine the resulting model type (see “Rules That
Determine Model Type”).

To apply positive feedback, use the syntax

sys = feedback(sys1,sys2,+1)

By default, feedback(sys1,sys2) assumes negative feedback and is equivalent to
feedback(sys1,sys2,-1).

Finally,

sys = feedback(sys1,sys2,feedin,feedout)

1 Functions — Alphabetical List

1-170

computes a closed-loop model sys for the more general feedback loop.

The vector feedin contains indices into the input vector of sys1 and specifies which
inputs u are involved in the feedback loop. Similarly, feedout specifies which outputs y
of sys1 are used for feedback. The resulting model sys has the same inputs and outputs
as sys1 (with their order preserved). As before, negative feedback is applied by default
and you must use

sys = feedback(sys1,sys2,feedin,feedout,+1)

to apply positive feedback.

For more complicated feedback structures, use append and connect.

Examples

Example 1

 feedback

1-171

To connect the plant

G s
s s

s s

() = + +
+ +

2 5 1

2 3

2

2

with the controller

H s
s

s
()

()
=

+
+

5 2

10

using negative feedback, type

G = tf([2 5 1],[1 2 3],'inputname','torque',...

 'outputname','velocity');

H = zpk(-2,-10,5)

Cloop = feedback(G,H)

These commands produce the following result.

Zero/pole/gain from input "torque" to output "velocity":

0.18182 (s+10) (s+2.281) (s+0.2192)

 (s+3.419) (s^2 + 1.763s + 1.064)

The result is a zero-pole-gain model as expected from the precedence rules. Note that
Cloop inherited the input and output names from G.

Example 2

Consider a state-space plant P with five inputs and four outputs and a state-space
feedback controller K with three inputs and two outputs. To connect outputs 1, 3, and 4
of the plant to the controller inputs, and the controller outputs to inputs 4 and 2 of the
plant, use

feedin = [4 2];

feedout = [1 3 4];

Cloop = feedback(P,K,feedin,feedout)

Example 3

You can form the following negative-feedback loops

1 Functions — Alphabetical List

1-172

by

Cloop = feedback(G,1) % left diagram

Cloop = feedback(1,G) % right diagram

Limitations

The feedback connection should be free of algebraic loop. If D1 and D2 are the feedthrough
matrices of sys1 and sys2, this condition is equivalent to:

• I + D1D2 nonsingular when using negative feedback
• I − D1D2 nonsingular when using positive feedback.

See Also
series | parallel | connect

 filt

1-173

filt

Specify discrete transfer functions in DSP format

Syntax

sys = filt(num,den)

sys = filt(num,den,Ts)

sys = filt(M)

Description

In digital signal processing (DSP), it is customary to write transfer functions as rational
expressions in z−1 and to order the numerator and denominator terms in ascending
powers of z−1. For example:

H z
z

z z

-
-

- -() =
+

+ +

1
1

1 2

2

1 0 4 2.

The function filt is provided to facilitate the specification of transfer functions in DSP
format.

sys = filt(num,den) creates a discrete-time transfer function sys with
numerator(s) num and denominator(s) den. The sample time is left unspecified (sys.Ts
= -1) and the output sys is a TF object.

sys = filt(num,den,Ts) further specifies the sample time Ts (in seconds).

sys = filt(M) specifies a static filter with gain matrix M.

Any of the previous syntaxes can be followed by property name/property value pairs of
the form

'Property',Value

1 Functions — Alphabetical List

1-174

Each pair specifies a particular property of the model, for example, the input names or
the transfer function variable. For information about the available properties and their
values, see the tf reference page.

Arguments

For SISO transfer functions, num and den are row vectors containing the numerator and
denominator coefficients ordered in ascending powers of z−1. For example, den = [1
0.4 2] represents the polynomial 1 + 0.4z−1 + 2z−2.

MIMO transfer functions are regarded as arrays of SISO transfer functions (one per I/
O channel), each of which is characterized by its numerator and denominator. The input
arguments num and den are then cell arrays of row vectors such that:

• num and den have as many rows as outputs and as many columns as inputs.
• Their (i, j) entries num{i,j} and den{i,j} specify the numerator and denominator

of the transfer function from input j to output i.

If all SISO entries have the same denominator, you can also set den to the row vector
representation of this common denominator.

Examples

Create a two-input digital filter with input names 'channel1' and 'channel2':

num = {1 , [1 0.3]};

den = {[1 1 2] ,[5 2]};

H = filt(num,den,'inputname',{'channel1' 'channel2'})

This syntax returns:

Transfer function from input "channel1" to output:

 1

1 + z^-1 + 2 z^-2

Transfer function from input "channel2" to output:

1 + 0.3 z^-1

 filt

1-175

 5 + 2 z^-1

Sampling time: unspecified

More About

Tips

filt behaves as tf with the Variable property set to 'z^-1'. See tf entry below for
details.

See Also
tf | zpk | ss

1 Functions — Alphabetical List

1-176

fnorm
Pointwise peak gain of FRD model

Syntax

fnrm = fnorm(sys)

fnrm = fnorm(sys,ntype)

Description

fnrm = fnorm(sys) computes the pointwise 2-norm of the frequency response
contained in the FRD model sys, that is, the peak gain at each frequency point. The
output fnrm is an FRD object containing the peak gain across frequencies.

fnrm = fnorm(sys,ntype) computes the frequency response gains using the matrix
norm specified by ntype. See norm for valid matrix norms and corresponding NTYPE
values.

See Also
norm | abs

 frd

1-177

frd
Create frequency-response data model, convert to frequency-response data model

Syntax

sys = frd(response,frequency)

sys = frd(response,frequency,Ts)

sys = frd

sysfrd = frd(sys,frequency)

sysfrd = frd(sys,frequency,units)

Description

sys = frd(response,frequency) creates a frequency-response data (frd) model
object sys from the frequency response data stored in the multidimensional array
response. The vector frequency represents the underlying frequencies for the
frequency response data. See Data Format for the Argument Response in FRD Models for
a list of response data formats.

sys = frd(response,frequency,Ts) creates a discrete-time frd model object
sys with scalar sample time Ts. Set Ts = -1 to create a discrete-time frd model object
without specifying the sample time.

sys = frd creates an empty frd model object.

The input argument list for any of these syntaxes can be followed by property name/
property value pairs of the form

'PropertyName',PropertyValue

You can use these extra arguments to set the various properties the model. For more
information about available properties of frd models, see “Properties” on page 1-178.

To force an FRD model sys to inherit all of its generic LTI properties from any existing
LTI model refsys, use the syntax

sys = frd(response,frequency,ltisys)

1 Functions — Alphabetical List

1-178

sysfrd = frd(sys,frequency) converts a dynamic system model sys to frequency
response data form. The frequency response is computed at the frequencies provided by
the vector frequency, in rad/TimeUnit, where TimeUnit is the time units of the input
dynamic system, specified in the TimeUnit property of sys.

sysfrd = frd(sys,frequency,units) converts a dynamic system model to an frd
model and interprets frequencies in the frequency vector to have the units specified
by the string units. For a list of values for the string units, see the FrequencyUnit
property in “Properties” on page 1-178.

Arguments

When you specify a SISO or MIMO FRD model, or an array of FRD models, the input
argument frequency is always a vector of length Nf, where Nf is the number of
frequency data points in the FRD. The specification of the input argument response is
summarized in the following table.

Data Format for the Argument Response in FRD Models

Model Form Response Data Format

SISO model Vector of length Nf for which response(i) is the frequency
response at the frequency frequency(i)

MIMO model with Ny
outputs and Nu inputs

Ny-by-Nu-by-Nf multidimensional array for which
response(i,j,k) specifies the frequency response from input
j to output i at frequency frequency(k)

S1-by-...-by-Sn array
of models with Ny
outputs and Nu inputs

Multidimensional array of size [Ny Nu S1 ... Sn] for which
response(i,j,k,:) specifies the array of frequency response
data from input j to output i at frequency frequency(k)

Properties

frd objects have the following properties:

Frequency

Frequency points of the frequency response data. Specify Frequency values in the units
specified by the FrequencyUnit property.

 frd

1-179

FrequencyUnit

Frequency units of the model.

FrequencyUnit is a string that specifies the units of the frequency vector in the
Frequency property. Set FrequencyUnit to one of the following values:

• 'rad/TimeUnit'

• 'cycles/TimeUnit'

• 'rad/s'

• 'Hz'

• 'kHz'

• 'MHz'

• 'GHz'

• 'rpm'

The units 'rad/TimeUnit' and 'cycles/TimeUnit' are relative to the time units
specified in the TimeUnit property.

Changing this property changes the overall system behavior. Use chgFreqUnit to
convert between frequency units without modifying system behavior.

Default: 'rad/TimeUnit'

ResponseData

Frequency response data.

The 'ResponseData' property stores the frequency response data as a 3-D array of
complex numbers. For SISO systems, 'ResponseData' is a vector of frequency response
values at the frequency points specified in the 'Frequency' property. For MIMO
systems with Nu inputs and Ny outputs, 'ResponseData' is an array of size [Ny Nu
Nw], where Nw is the number of frequency points.

ioDelay

Transport delays. ioDelay is a numeric array specifying a separate transport delay for
each input/output pair.

For continuous-time systems, specify transport delays in the time unit stored in the
TimeUnit property. For discrete-time systems, specify transport delays in integer
multiples of the sampling period, Ts.

1 Functions — Alphabetical List

1-180

For a MIMO system with Ny outputs and Nu inputs, set ioDelay to a Ny-by-Nu array.
Each entry of this array is a numerical value that represents the transport delay for the
corresponding input/output pair. You can also set ioDelay to a scalar value to apply the
same delay to all input/output pairs.

Default: 0 for all input/output pairs

InputDelay

Input delay for each input channel, specified as a scalar value or numeric vector. For
continuous-time systems, specify input delays in the time unit stored in the TimeUnit
property. For discrete-time systems, specify input delays in integer multiples of the
sampling period Ts. For example, InputDelay = 3 means a delay of three sampling
periods.

For a system with Nu inputs, set InputDelay to an Nu-by-1 vector. Each entry of this
vector is a numerical value that represents the input delay for the corresponding input
channel.

You can also set InputDelay to a scalar value to apply the same delay to all channels.

Default: 0

OutputDelay

Output delays. OutputDelay is a numeric vector specifying a time delay for each output
channel. For continuous-time systems, specify output delays in the time unit stored
in the TimeUnit property. For discrete-time systems, specify output delays in integer
multiples of the sampling period Ts. For example, OutputDelay = 3 means a delay of
three sampling periods.

For a system with Ny outputs, set OutputDelay to an Ny-by-1 vector, where each entry
is a numerical value representing the output delay for the corresponding output channel.
You can also set OutputDelay to a scalar value to apply the same delay to all channels.

Default: 0 for all output channels

Ts

Sampling time. For continuous-time models, Ts = 0. For discrete-time models, Ts is
a positive scalar representing the sampling period. This value is expressed in the unit
specified by the TimeUnit property of the model. To denote a discrete-time model with
unspecified sampling time, set Ts = -1.

 frd

1-181

Changing this property does not discretize or resample the model. Use c2d and d2c to
convert between continuous- and discrete-time representations. Use d2d to change the
sampling time of a discrete-time system.

Default: 0 (continuous time)

TimeUnit

String representing the unit of the time variable. This property specifies the units for the
time variable, the sampling time Ts, and any time delays in the model. Use any of the
following values:

• 'nanoseconds'

• 'microseconds'

• 'milliseconds'

• 'seconds'

• 'minutes'

• 'hours'

• 'days'

• 'weeks'

• 'months'

• 'years'

Changing this property has no effect on other properties, and therefore changes the
overall system behavior. Use chgTimeUnit to convert between time units without
modifying system behavior.

Default: 'seconds'

InputName

Input channel names. Set InputName to a string for single-input model. For a multi-
input model, set InputName to a cell array of strings.

Alternatively, use automatic vector expansion to assign input names for multi-input
models. For example, if sys is a two-input model, enter:

sys.InputName = 'controls';

1 Functions — Alphabetical List

1-182

The input names automatically expand to {'controls(1)';'controls(2)'}.

You can use the shorthand notation u to refer to the InputName property. For example,
sys.u is equivalent to sys.InputName.

Input channel names have several uses, including:

• Identifying channels on model display and plots
• Extracting subsystems of MIMO systems
• Specifying connection points when interconnecting models

Default: Empty string '' for all input channels

InputUnit

Input channel units. Use InputUnit to keep track of input signal units. For a single-
input model, set InputUnit to a string. For a multi-input model, set InputUnit to a cell
array of strings. InputUnit has no effect on system behavior.

Default: Empty string '' for all input channels

InputGroup

Input channel groups. The InputGroup property lets you assign the input channels of
MIMO systems into groups and refer to each group by name. Specify input groups as a
structure. In this structure, field names are the group names, and field values are the
input channels belonging to each group. For example:

sys.InputGroup.controls = [1 2];

sys.InputGroup.noise = [3 5];

creates input groups named controls and noise that include input channels 1, 2 and
3, 5, respectively. You can then extract the subsystem from the controls inputs to all
outputs using:

sys(:,'controls')

Default: Struct with no fields

OutputName

Output channel names. Set OutputName to a string for single-output model. For a multi-
output model, set OutputName to a cell array of strings.

 frd

1-183

Alternatively, use automatic vector expansion to assign output names for multi-output
models. For example, if sys is a two-output model, enter:

sys.OutputName = 'measurements';

The output names to automatically expand to
{'measurements(1)';'measurements(2)'}.

You can use the shorthand notation y to refer to the OutputName property. For example,
sys.y is equivalent to sys.OutputName.

Output channel names have several uses, including:

• Identifying channels on model display and plots
• Extracting subsystems of MIMO systems
• Specifying connection points when interconnecting models

Default: Empty string '' for all input channels

OutputUnit

Output channel units. Use OutputUnit to keep track of output signal units. For
a single-output model, set OutputUnit to a string. For a multi-output model, set
OutputUnit to a cell array of strings. OutputUnit has no effect on system behavior.

Default: Empty string '' for all input channels

OutputGroup

Output channel groups. The OutputGroup property lets you assign the output channels
of MIMO systems into groups and refer to each group by name. Specify output groups as
a structure. In this structure, field names are the group names, and field values are the
output channels belonging to each group. For example:

sys.OutputGroup.temperature = [1];

sys.InputGroup.measurement = [3 5];

creates output groups named temperature and measurement that include output
channels 1, and 3, 5, respectively. You can then extract the subsystem from all inputs to
the measurement outputs using:

sys('measurement',:)

1 Functions — Alphabetical List

1-184

Default: Struct with no fields

Name

System name. Set Name to a string to label the system.

Default: ''

Notes

Any text that you want to associate with the system. Set Notes to a string or a cell array
of strings.

Default: {}

UserData

Any type of data you wish to associate with system. Set UserData to any MATLAB data
type.

Default: []

SamplingGrid

Sampling grid for model arrays, specified as a data structure.

For model arrays that are derived by sampling one or more independent variables,
this property tracks the variable values associated with each model in the array. This
information appears when you display or plot the model array. Use this information to
trace results back to the independent variables.

Set the field names of the data structure to the names of the sampling variables. Set
the field values to the sampled variable values associated with each model in the array.
All sampling variables should be numeric and scalar valued, and all arrays of sampled
values should match the dimensions of the model array.

For example, suppose you create a 11-by-1 array of linear models, sysarr, by taking
snapshots of a linear time-varying system at times t = 0:10. The following code stores
the time samples with the linear models.

 sysarr.SamplingGrid = struct('time',0:10)

Similarly, suppose you create a 6-by-9 model array, M, by independently sampling two
variables, zeta and w. The following code attaches the (zeta,w) values to M.

 frd

1-185

[zeta,w] = ndgrid(<6 values of zeta>,<9 values of w>)

M.SamplingGrid = struct('zeta',zeta,'w',w)

When you display M, each entry in the array includes the corresponding zeta and w
values.

M

M(:,:,1,1) [zeta=0.3, w=5] =

 25

 s^2 + 3 s + 25

M(:,:,2,1) [zeta=0.35, w=5] =

 25

 s^2 + 3.5 s + 25

...

Default: []

Examples

Create Frequency-Response Model

Create a SISO FRD model from a frequency vector and response data:

% generate a frequency vector and response data

freq = logspace(1,2);

resp = .05*(freq).*exp(i*2*freq);

% Create a FRD model

sys = frd(resp,freq);

More About
• “What Are Model Objects?”
• “Frequency Response Data (FRD) Models”

1 Functions — Alphabetical List

1-186

See Also
chgTimeUnit | chgFreqUnit | frdata | set | ss | tf | zpk | idfrd

Tutorials
• “Frequency-Response Model”
• “MIMO Frequency Response Data Model”

 frdata

1-187

frdata
Access data for frequency response data (FRD) object

Syntax
[response,freq] = frdata(sys)

[response,freq,covresp] = frdata(sys)

[response,freq,Ts,covresp] = frdata(sys,'v')

[response,freq,Ts] = frdata(sys)

Description
[response,freq] = frdata(sys) returns the response data and frequency
samples of the FRD model sys. For an FRD model with Ny outputs and Nu inputs at Nf
frequencies:

• response is an Ny-by-Nu-by-Nf multidimensional array where the (i,j) entry
specifies the response from input j to output i.

• freq is a column vector of length Nf that contains the frequency samples of the FRD
model.

See the frd reference page for more information on the data format for FRD response
data.

[response,freq,covresp] = frdata(sys) also returns the covariance covresp
of the response data resp for idfrd model sys. (Using idfrd models requires
System Identification Toolbox software.) The covariance covresp is a 5D-array where
covH(i,j,k,:,:) contains the 2-by-2 covariance matrix of the response resp(i,j,k).
The (1,1) element is the variance of the real part, the (2,2) element the variance of
the imaginary part and the (1,2) and (2,1) elements the covariance between the real
and imaginary parts.

For SISO FRD models, the syntax

[response,freq] = frdata(sys,'v')

forces frdata to return the response data as a column vector rather than a 3-
dimensional array (see example below). Similarly

1 Functions — Alphabetical List

1-188

[response,freq,Ts,covresp] = frdata(sys,'v') for an IDFRD model sys
returns covresp as a 3-dimensional rather than a 5-dimensional array.

[response,freq,Ts] = frdata(sys) also returns the sample time Ts.

Other properties of sys can be accessed with get or by direct structure-like referencing
(e.g., sys.Frequency).

Arguments

The input argument sys to frdata must be an FRD model.

Examples

Extract Data from Frequency Response Data Model

Create a frequency response data model and extract the frequency response data.

Create a frequency response data by computing the response of a transfer function on a
grid of frequencies.

H = tf([-1.2,-2.4,-1.5],[1,20,9.1]);

w = logspace(-2,3,101);

sys = frd(H,w);

sys is a SISO frequency response data (frd) model containing the frequency response at
101 frequencies.

Extract the frequency response data from sys.

[response,freq] = frdata(sys);

response is a 1-by-1-by-101 array. response(1,1,k) is the complex frequency
response at the frequency freq(k).

See Also
frd | get | set | freqresp

 freqresp

1-189

freqresp
Frequency response over grid

Syntax

[H,wout] = freqresp(sys)

H = freqresp(sys,w)

H = freqresp(sys,w,units)

[H,wout,covH] = freqresp(idsys,...)

Description

[H,wout] = freqresp(sys) returns the frequency response of the “dynamic system
model” sys at frequencies wout. The freqresp command automatically determines the
frequencies based on the dynamics of sys.

H = freqresp(sys,w) returns the frequency response on the real frequency grid
specified by the vector w.

H = freqresp(sys,w,units) explicitly specifies the frequency units of w with the
string units.

[H,wout,covH] = freqresp(idsys,...) also returns the covariance covH of the
frequency response of the “identified model” idsys.

Input Arguments

sys

Any “dynamic system model” or model array.

w

Vector of real frequencies at which to evaluate the frequency response. Specify
frequencies in units of rad/TimeUnit, where TimeUnit is the time units specified in the
TimeUnit property of sys.

1 Functions — Alphabetical List

1-190

units

String specifying the units of the frequencies in the input frequency vector w. Units can
take the following values:

• 'rad/TimeUnit' — radians per the time unit specified in the TimeUnit property of
sys

• 'cycles/TimeUnit' — cycles per the time unit specified in the TimeUnit property
of sys

• 'rad/s'

• 'Hz'

• 'kHz'

• 'MHz'

• 'GHz'

• 'rpm'

Default: 'rad/TimeUnit'

idsys

Any “identified model”.

Output Arguments

H

Array containing the frequency response values.

If sys is an individual dynamic system model having Ny outputs and Nu inputs, H is a
3D array with dimensions Ny-by-Nu-by-Nw, where Nw is the number of frequency points.
Thus, H(:,:,k) is the response at the frequency w(k) or wout(k).

If sys is a model array of size [Ny Nu S1 ... Sn], H is an array with dimensions Ny-
by-Nu-by-Nw-by-S1-by-...-by-Sn] array.

If sys is a frequency response data model (such as frd, genfrd, or idfrd),
freqresp(sys,w) evaluates to NaN for values of w falling outside the frequency

 freqresp

1-191

interval defined by sys.frequency. The freqresp command can interpolate between
frequencies in sys.frequency. However, freqresp cannot extrapolate beyond the
frequency interval defined by sys.frequency.

wout

Vector of frequencies corresponding to the frequency response values in H. If you omit w
from the inputs to freqresp, the command automatically determines the frequencies of
wout based on the system dynamics. If you specify w, then wout = w

covH

Covariance of the response H. The covariance is a 5D array where covH(i,j,k,:,:)
contains the 2-by-2 covariance matrix of the response from the ith input to the jth
output at frequency w(k). The (1,1) element of this 2-by-2 matrix is the variance of the
real part of the response. The (2,2) element is the variance of the imaginary part. The
(1,2) and (2,1) elements are the covariance between the real and imaginary parts of the
response.

Examples

Frequency Response

Compute the frequency response of the 2-input, 2-output system

sys
s

s

s

=
+

-

+

È

Î

Í
Í
Í
Í

˘

˚

˙
˙
˙
˙

0
1

1

1

2
1

sys11 = 0;

sys22 = 1;

sys12 = tf(1,[1 1]);

sys21 = tf([1 -1],[1 2]);

sys = [sys11,sys12;sys21,sys22];

[H,wout] = freqresp(sys);

1 Functions — Alphabetical List

1-192

H is a 2-by-2-by-45 array. Each entry H(:,:,k) in H is a 2-by-2 matrix giving the
complex frequency response of all input-output pairs of sys at the corresponding
frequency wout(k). The 45 frequencies in wout are automatically selected based on the
dynamics of sys.

Response on Specified Frequency Grid

Compute the frequency response of the 2-input, 2-output system

sys
s

s

s

=
+

-

+

È

Î

Í
Í
Í
Í

˘

˚

˙
˙
˙
˙

0
1

1

1

2
1

on a logarithmically-spaced grid of 200 frequency points between 10 and 100 radians per
second.

sys11 = 0;

sys22 = 1;

sys12 = tf(1,[1 1]);

sys21 = tf([1 -1],[1 2]);

sys = [sys11,sys12;sys21,sys22];

w = logspace(1,2,200);

H = freqresp(sys,w);

H is a 2-by-2-by-200 array. Each entry H(:,:,k) in H is a 2-by-2 matrix giving the
complex frequency response of all input-output pairs of sys at the corresponding
frequency w(k).

Frequency Response and Associated Covariance

Compute the frequency response and associated covariance for an identified model at its
peak response frequency.

load iddata1 z1

model = procest(z1, 'P2UZ');

w = 4.26;

 freqresp

1-193

[H,~,covH] = freqresp(model, w)

Alternatives

Use evalfr to evaluate the frequency response at individual frequencies or small
numbers of frequencies. freqresp is optimized for medium-to-large vectors of
frequencies.

More About

Frequency Response

In continuous time, the frequency response at a frequency ω is the transfer function value
at s = jω. For state-space models, this value is given by

H j D C j I A B() ()w w= + − −1

In discrete time, the frequency response is the transfer function evaluated at points
on the unit circle that correspond to the real frequencies. freqresp maps the real
frequencies w(1),..., w(N) to points on the unit circle using the transformation z e j Ts= w .
Ts is the sample time. The function returns the values of the transfer function at the
resulting z values. For models with unspecified sample time, freqresp uses Ts = 1.

Algorithms

For transfer functions or zero-pole-gain models, freqresp evaluates the numerator(s)
and denominator(s) at the specified frequency points. For continuous-time state-space
models (A, B, C, D), the frequency response is

D C j A B N+ − =−() , , ,w w w w
1

1 …

For efficiency, A is reduced to upper Hessenberg form and the linear equation (jω − A)X
= B is solved at each frequency point, taking advantage of the Hessenberg structure.
The reduction to Hessenberg form provides a good compromise between efficiency and
reliability. See [1] for more details on this technique.

1 Functions — Alphabetical List

1-194

References

[1] Laub, A.J., "Efficient Multivariable Frequency Response Computations," IEEE
Transactions on Automatic Control, AC-26 (1981), pp. 407-408.

See Also
bode | nyquist | interp | evalfr | nichols | sigma | ltiview | spectrum

 freqsep

1-195

freqsep

Slow-fast decomposition

Syntax

[Gs,Gf] = freqsep(G,fcut)

[Gs,Gf] = freqsep(G,fcut,options)

Description

[Gs,Gf] = freqsep(G,fcut) decomposes a linear dynamic system into slow and fast
components around the specified cutoff frequency. The decomposition is such that G = Gs
+ Gf.

[Gs,Gf] = freqsep(G,fcut,options) specifies additional options for the
decomposition.

Examples

Decompose Model into Fast and Slow Dynamics

Load a dynamic system model.

load numdemo Pd

bode(Pd)

1 Functions — Alphabetical List

1-196

Pd has four complex poles and one real pole. The Bode plot shows a resonance around 210
rad/s and a higher-frequency resonance below 10,000 rad/s.

Decompose this model around 1000 rad/s to separate these two resonances.

[Gs,Gf] = freqsep(Pd,10^3);

bode(Pd,Gs,Gf)

legend('original','slow','fast','Location','Southwest')

 freqsep

1-197

The Bode plot shows that the slow component, Gs, contains only the lower-frequency
resonance. This component also matches the DC gain of the original model. The fast
component, Gf, contains the higher-frequency resonances and matches the response of
the original model at high frequencies. The sum of the two components Gs+Gf yields the
original model.

Separate Nearby Modes by Adjusting Tolerance

Decompose a model into slow and fast components between poles that are closely spaced.

The following system includes a real pole and a complex pair of poles that are all close to
s = -2.

G = zpk(-.5,[-1.9999 -2+1e-4i -2-1e-4i],10);

1 Functions — Alphabetical List

1-198

Try to decompose the model about 2 rad/s, so that the slow component cotains the real
pole and the fast component contains the complex pair.

[Gs,Gf] = freqsep(G,2);

Warning: One or more fast modes could not be separated from the slow modes. To

force separation, increase the absolute or relative tolerances ("AbsTol" and

"RelTol" options). Type "help freqsepOptions" for more information.

These poles are too close together for freqsep to separate. Increase the relative
tolerance to allow the separation.

options = freqsepOptions('RelTol',1e-4);

[Gs,Gf] = freqsep(G,2,options);

Now freqsep successfully separates the dynamics about 2 rad/s.

slowpole = pole(Gs)

fastpole = pole(Gf)

slowpole =

 -1.9999

fastpole =

 -2.0000 + 0.0001i

 -2.0000 - 0.0001i

Input Arguments

G — Dynamic system to decompose
numeric LTI model

Dynamic system to decompose, specified as a numeric LTI model, such as a ss or tf
model.

fcut — Cutoff frequency
positive scalar

 freqsep

1-199

Cutoff frequency for fast-slow decomposition, specified as a positive scalar. The output Gs
contains all poles with natural frequency less than fcut. The output Gf contains all poles
with natural frequency greater than or equal to fcut.

options — Options for decomposition
freqsepOptions options set

Options for the decomposition, specified as an options set you create with
freqsepOptions. Available options include absolute and relative tolerance for accuracy
of the decomposed systems.

Output Arguments

Gs — Slow dynamics
numeric LTI model

Slow dynamics of the decomposed system, returned as a numeric LTI model of the same
type as G. Gs contains all poles of G with natural frequency less than fcut, and is such
that G = Gs + Gf.

Gf — Fast dynamics
numeric LTI model

Fast dynamics of the decomposed system, returned as a numeric LTI model of the same
type as G. Gf contains all poles of G with natural frequency greater than or equal to fcut,
and is such that G = Gs + Gf.

See Also
freqsepOptions

1 Functions — Alphabetical List

1-200

freqsepOptions
Options for slow-fast decomposition

Syntax

opt = freqsepOptions

opt = freqsepOptions(Name,Value)

Description

opt = freqsepOptions returns the default options for freqsep.

opt = freqsepOptions(Name,Value) returns an options set with the options
specified by one or more Name,Value pair arguments.

Examples

Separate Nearby Modes by Adjusting Tolerance

Decompose a model into slow and fast components between poles that are closely spaced.

The following system includes a real pole and a complex pair of poles that are all close to
s = -2.

G = zpk(-.5,[-1.9999 -2+1e-4i -2-1e-4i],10);

Try to decompose the model about 2 rad/s, so that the slow component cotains the real
pole and the fast component contains the complex pair.

[Gs,Gf] = freqsep(G,2);

Warning: One or more fast modes could not be separated from the slow modes. To

force separation, increase the absolute or relative tolerances ("AbsTol" and

"RelTol" options). Type "help freqsepOptions" for more information.

These poles are too close together for freqsep to separate. Increase the relative
tolerance to allow the separation.

 freqsepOptions

1-201

options = freqsepOptions('RelTol',1e-4);

[Gs,Gf] = freqsep(G,2,options);

Now freqsep successfully separates the dynamics about 2 rad/s.

slowpole = pole(Gs)

fastpole = pole(Gf)

slowpole =

 -1.9999

fastpole =

 -2.0000 + 0.0001i

 -2.0000 - 0.0001i

Input Arguments

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

Example: 'AbsTol',1e-4

'AbsTol' — Absolute tolerance for decomposition
0 (default) | nonnegative scalar

Absolute tolerance for slow-fast decomposition, specified as a nonnegative scalar value.
freqresp ensures that the frequency responses of the original system, G, and the sum
of the decomposed systems Gs+Gf, differ by no more than AbsTol + RelTol*abs(G).
Increase AbsTol to help separate nearby modes, at the expense of the accuracy of the
decomposition.

'RelTol' — Relative tolerance for decomposition
1e-8 (default) | nonnegative scalar

1 Functions — Alphabetical List

1-202

Relative tolerance for slow-fast decomposition, specified as a nonnegative scalar value.
freqresp ensures that the frequency responses of the original system, G, and the sum
of the decomposed systems Gs+Gf, differ by no more than AbsTol + RelTol*abs(G).
Increase RelTol to help separate nearby modes, at the expense of the accuracy of the
decomposition.

Output Arguments

opt — Options for freqsep
freqsepOptions options set

Options for freqsep, returned as a freqsepOptions options set. Use opt as the last
argument to freqsep when computing slow-fast decomposition.

See Also
freqsep

 fselect

1-203

fselect
Select frequency points or range in FRD model

Syntax

subsys = fselect(sys,fmin,fmax)

subsys = fselect(sys,index)

Description

subsys = fselect(sys,fmin,fmax) takes an FRD model sys and selects the portion
of the frequency response between the frequencies fmin and fmax. The selected range
[fmin,fmax] should be expressed in the FRD model units. For an IDFRD model
(requires System Identification Toolbox software), the SpectrumData, CovarianceData
and NoiseCovariance values, if non-empty, are also selected in the chosen range.

subsys = fselect(sys,index) selects the frequency points specified by the vector of
indices index. The resulting frequency grid is

sys.Frequency(index)

See Also
fcat | fdel | interp | frd

1 Functions — Alphabetical List

1-204

gcare
Generalized solver for continuous-time algebraic Riccati equation

Syntax

[X,L,report] = gcare(H,J,ns)

[X1,X2,D,L] = gcare(H,...,'factor')

Description

[X,L,report] = gcare(H,J,ns) computes the unique stabilizing solution X of the
continuous-time algebraic Riccati equation associated with a Hamiltonian pencil of the
form

H tJ

A F S

G A S

S S R

E

E- = - ¢ -

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

-

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

1

2

2 1

0 0

0 0

0 0 0¢ ¢

¢

The optional input ns is the row size of the A matrix. Default values for J and ns
correspond to E = I and R = [].

Optionally, gcare returns the vector L of closed-loop eigenvalues and a diagnosis report
with value:

• -1 if the Hamiltonian pencil has jw-axis eigenvalues
• -2 if there is no finite stabilizing solution X
• 0 if a finite stabilizing solution X exists

This syntax does not issue any error message when X fails to exist.

[X1,X2,D,L] = gcare(H,...,'factor') returns two matrices X1, X2 and a diagonal
scaling matrix D such that X = D*(X2/X1)*D. The vector L contains the closed-loop
eigenvalues. All outputs are empty when the associated Hamiltonian matrix has
eigenvalues on the imaginary axis.

 gcare

1-205

See Also
care | gdare

1 Functions — Alphabetical List

1-206

gdare
Generalized solver for discrete-time algebraic Riccati equation

Syntax

[X,L,report] = gdare(H,J,ns)

[X1,X2,D,L] = gdare(H,J,NS,'factor')

Description

[X,L,report] = gdare(H,J,ns) computes the unique stabilizing solution X of the
discrete-time algebraic Riccati equation associated with a Symplectic pencil of the form

H tJ

A F B

Q E S

S R

E

A

B

− = − −

−

′
′

′
′0

0 0

0 0

0 0

The third input ns is the row size of the A matrix.

Optionally, gdare returns the vector L of closed-loop eigenvalues and a diagnosis report
with value:

• -1 if the Symplectic pencil has eigenvalues on the unit circle
• -2 if there is no finite stabilizing solution X
• 0 if a finite stabilizing solution X exists

This syntax does not issue any error message when X fails to exist.

[X1,X2,D,L] = gdare(H,J,NS,'factor') returns two matrices X1, X2 and a
diagonal scaling matrix D such that X = D*(X2/X1)*D. The vector L contains the closed-
loop eigenvalues. All outputs are empty when the Symplectic pencil has eigenvalues on
the unit circle.

See Also
dare | gcare

 genfrd

1-207

genfrd

Generalized frequency response data (FRD) model

Description

Generalized FRD (genfrd) models arise when you combine numeric FRD models
with models containing tunable components (Control Design Blocks). genfrd models
keep track of how the tunable blocks interact with the tunable components. For more
information about Control Design Blocks, see “Generalized Models”.

Construction

To construct a genfrd model, use series, parallel, lft, or connect, or the
arithmetic operators +, -, *, /, \, and ^, to combine a numeric FRD model with control
design blocks.

You can also convert any numeric LTI model or control design block sys to genfrd form.

frdsys = genfrd(sys,freqs,frequnits) converts any static model or dynamic
system sys to a generalized FRD model. If sys is not an frd model object, genfrd
computes the frequency response of each frequency point in the vector freqs. The
frequencies freqs are in the units specified by the optional argument frequnits. If
frequnits is omitted, the units of freqs are 'rad/TimeUnit'.

frdsys = genfrd(sys,freqs,frequnits,timeunits) further specifies the time
units for converting sys to genfrd form.

For more information about time and frequency units of genfrd models, see “Properties”
on page 1-209.

Input Arguments

sys

A static model or dynamic system model object.

1 Functions — Alphabetical List

1-208

freqs

Vector of frequency points. Express frequencies in the unit specified in frequnits.

frequnits

String specifying the frequency units of the genfrd model. Set frequnits to one of the
following values:

• 'rad/TimeUnit'

• 'cycles/TimeUnit'

• 'rad/s'

• 'Hz'

• 'kHz'

• 'MHz'

• 'GHz'

• 'rpm'

Default: 'rad/TimeUnit'

timeunits

String specifying the time units of the genfrd model. Set timeunits to one of the
following values:

• 'nanoseconds'

• 'microseconds'

• 'milliseconds'

• 'seconds'

• 'minutes'

• 'hours'

• 'days'

• 'weeks'

• 'months'

• 'years'

Default: 'seconds'

 genfrd

1-209

Properties

Blocks

Structure containing the control design blocks included in the generalized LTI model
or generalized matrix. The field names of Blocks are the Name property of each control
design block.

You can change some attributes of these control design blocks using dot notation. For
example, if the generalized LTI model or generalized matrix M contains a realp tunable
parameter a, you can change the current value of a using:

M.Blocks.a.Value = -1;

Frequency

Frequency points of the frequency response data. Specify Frequency values in the units
specified by the FrequencyUnit property.

FrequencyUnit

Frequency units of the model.

FrequencyUnit is a string that specifies the units of the frequency vector in the
Frequency property. Set FrequencyUnit to one of the following values:

• 'rad/TimeUnit'

• 'cycles/TimeUnit'

• 'rad/s'

• 'Hz'

• 'kHz'

• 'MHz'

• 'GHz'

• 'rpm'

The units 'rad/TimeUnit' and 'cycles/TimeUnit' are relative to the time units
specified in the TimeUnit property.

Changing this property changes the overall system behavior. Use chgFreqUnit to
convert between frequency units without modifying system behavior.

1 Functions — Alphabetical List

1-210

Default: 'rad/TimeUnit'

InputDelay

Input delay for each input channel, specified as a scalar value or numeric vector. For
continuous-time systems, specify input delays in the time unit stored in the TimeUnit
property. For discrete-time systems, specify input delays in integer multiples of the
sampling period Ts. For example, InputDelay = 3 means a delay of three sampling
periods.

For a system with Nu inputs, set InputDelay to an Nu-by-1 vector. Each entry of this
vector is a numerical value that represents the input delay for the corresponding input
channel.

You can also set InputDelay to a scalar value to apply the same delay to all channels.

Default: 0

OutputDelay

Output delays. OutputDelay is a numeric vector specifying a time delay for each output
channel. For continuous-time systems, specify output delays in the time unit stored
in the TimeUnit property. For discrete-time systems, specify output delays in integer
multiples of the sampling period Ts. For example, OutputDelay = 3 means a delay of
three sampling periods.

For a system with Ny outputs, set OutputDelay to an Ny-by-1 vector, where each entry
is a numerical value representing the output delay for the corresponding output channel.
You can also set OutputDelay to a scalar value to apply the same delay to all channels.

Default: 0 for all output channels

Ts

Sampling time. For continuous-time models, Ts = 0. For discrete-time models, Ts is
a positive scalar representing the sampling period. This value is expressed in the unit
specified by the TimeUnit property of the model. To denote a discrete-time model with
unspecified sampling time, set Ts = -1.

Changing this property does not discretize or resample the model. Use c2d and d2c to
convert between continuous- and discrete-time representations. Use d2d to change the
sampling time of a discrete-time system.

 genfrd

1-211

Default: 0 (continuous time)

TimeUnit

String representing the unit of the time variable. This property specifies the units for the
time variable, the sampling time Ts, and any time delays in the model. Use any of the
following values:

• 'nanoseconds'

• 'microseconds'

• 'milliseconds'

• 'seconds'

• 'minutes'

• 'hours'

• 'days'

• 'weeks'

• 'months'

• 'years'

Changing this property has no effect on other properties, and therefore changes the
overall system behavior. Use chgTimeUnit to convert between time units without
modifying system behavior.

Default: 'seconds'

InputName

Input channel names. Set InputName to a string for single-input model. For a multi-
input model, set InputName to a cell array of strings.

Alternatively, use automatic vector expansion to assign input names for multi-input
models. For example, if sys is a two-input model, enter:

sys.InputName = 'controls';

The input names automatically expand to {'controls(1)';'controls(2)'}.

You can use the shorthand notation u to refer to the InputName property. For example,
sys.u is equivalent to sys.InputName.

1 Functions — Alphabetical List

1-212

Input channel names have several uses, including:

• Identifying channels on model display and plots
• Extracting subsystems of MIMO systems
• Specifying connection points when interconnecting models

Default: Empty string '' for all input channels

InputUnit

Input channel units. Use InputUnit to keep track of input signal units. For a single-
input model, set InputUnit to a string. For a multi-input model, set InputUnit to a cell
array of strings. InputUnit has no effect on system behavior.

Default: Empty string '' for all input channels

InputGroup

Input channel groups. The InputGroup property lets you assign the input channels of
MIMO systems into groups and refer to each group by name. Specify input groups as a
structure. In this structure, field names are the group names, and field values are the
input channels belonging to each group. For example:

sys.InputGroup.controls = [1 2];

sys.InputGroup.noise = [3 5];

creates input groups named controls and noise that include input channels 1, 2 and
3, 5, respectively. You can then extract the subsystem from the controls inputs to all
outputs using:

sys(:,'controls')

Default: Struct with no fields

OutputName

Output channel names. Set OutputName to a string for single-output model. For a multi-
output model, set OutputName to a cell array of strings.

Alternatively, use automatic vector expansion to assign output names for multi-output
models. For example, if sys is a two-output model, enter:

sys.OutputName = 'measurements';

 genfrd

1-213

The output names to automatically expand to
{'measurements(1)';'measurements(2)'}.

You can use the shorthand notation y to refer to the OutputName property. For example,
sys.y is equivalent to sys.OutputName.

Output channel names have several uses, including:

• Identifying channels on model display and plots
• Extracting subsystems of MIMO systems
• Specifying connection points when interconnecting models

Default: Empty string '' for all input channels

OutputUnit

Output channel units. Use OutputUnit to keep track of output signal units. For
a single-output model, set OutputUnit to a string. For a multi-output model, set
OutputUnit to a cell array of strings. OutputUnit has no effect on system behavior.

Default: Empty string '' for all input channels

OutputGroup

Output channel groups. The OutputGroup property lets you assign the output channels
of MIMO systems into groups and refer to each group by name. Specify output groups as
a structure. In this structure, field names are the group names, and field values are the
output channels belonging to each group. For example:

sys.OutputGroup.temperature = [1];

sys.InputGroup.measurement = [3 5];

creates output groups named temperature and measurement that include output
channels 1, and 3, 5, respectively. You can then extract the subsystem from all inputs to
the measurement outputs using:

sys('measurement',:)

Default: Struct with no fields

Name

System name. Set Name to a string to label the system.

1 Functions — Alphabetical List

1-214

Default: ''

Notes

Any text that you want to associate with the system. Set Notes to a string or a cell array
of strings.

Default: {}

UserData

Any type of data you wish to associate with system. Set UserData to any MATLAB data
type.

Default: []

SamplingGrid

Sampling grid for model arrays, specified as a data structure.

For model arrays that are derived by sampling one or more independent variables,
this property tracks the variable values associated with each model in the array. This
information appears when you display or plot the model array. Use this information to
trace results back to the independent variables.

Set the field names of the data structure to the names of the sampling variables. Set
the field values to the sampled variable values associated with each model in the array.
All sampling variables should be numeric and scalar valued, and all arrays of sampled
values should match the dimensions of the model array.

For example, suppose you create a 11-by-1 array of linear models, sysarr, by taking
snapshots of a linear time-varying system at times t = 0:10. The following code stores
the time samples with the linear models.

 sysarr.SamplingGrid = struct('time',0:10)

Similarly, suppose you create a 6-by-9 model array, M, by independently sampling two
variables, zeta and w. The following code attaches the (zeta,w) values to M.

[zeta,w] = ndgrid(<6 values of zeta>,<9 values of w>)

M.SamplingGrid = struct('zeta',zeta,'w',w)

When you display M, each entry in the array includes the corresponding zeta and w
values.

 genfrd

1-215

M

M(:,:,1,1) [zeta=0.3, w=5] =

 25

 s^2 + 3 s + 25

M(:,:,2,1) [zeta=0.35, w=5] =

 25

 s^2 + 3.5 s + 25

...

Default: []

More About

Tips

• You can manipulate genfrd models as ordinary frd models. Frequency-domain
analysis commands such as bode evaluate the model by replacing each tunable
parameter with its current value.

• “Models with Tunable Coefficients”
• “Generalized Models”

See Also
frd | genss | getValue | chgFreqUnit

1 Functions — Alphabetical List

1-216

genmat

Generalized matrix with tunable parameters

Description

Generalized matrices (genmat) are matrices that depend on tunable parameters (see
realp). You can use generalized matrices for parameter studies. You can also use
generalized matrices for building generalized LTI models (see genss) that represent
control systems having a mixture of fixed and tunable components.

Construction

Generalized matrices arise when you combine numeric values with static blocks such as
realpobjects. You create such combinations using any of the arithmetic operators +, -, *,
/, \, and ^. For example, if a and b are tunable parameters, the expression M = a + b is
represented as a generalized matrix.

A generalized matrix can represent a tunable gain surface for constructing gain-
scheduled controllers. Use the Robust Control Toolbox command gainsurf to create
such a tunable gain surface.

The internal data structure of the genmat object M keeps track of how M depends on the
parameters a and b. The Blocks property of M lists the parameters a and b.

M = genmat(A) converts the numeric array or tunable parameter A into a genmat
object.

Input Arguments

A

Static control design block, such as a realp object.

If A is a numeric array, M is a generalized matrix of the same dimensions as A, with no
tunable parameters.

 genmat

1-217

If A is a static control design block, M is a generalized matrix whose Blocks property
lists A as the only block.

Properties

Blocks

Structure containing the control design blocks included in the generalized LTI model
or generalized matrix. The field names of Blocks are the Name property of each control
design block.

You can change some attributes of these control design blocks using dot notation. For
example, if the generalized LTI model or generalized matrix M contains a realp tunable
parameter a, you can change the current value of a using:

M.Blocks.a.Value = -1;

SamplingGrid

Sampling grid for model arrays, specified as a data structure.

For model arrays that are derived by sampling one or more independent variables,
this property tracks the variable values associated with each model in the array. This
information appears when you display or plot the model array. Use this information to
trace results back to the independent variables.

Set the field names of the data structure to the names of the sampling variables. Set
the field values to the sampled variable values associated with each model in the array.
All sampling variables should be numeric and scalar valued, and all arrays of sampled
values should match the dimensions of the model array.

For example, suppose you create a 11-by-1 array of linear models, sysarr, by taking
snapshots of a linear time-varying system at times t = 0:10. The following code stores
the time samples with the linear models.

 sysarr.SamplingGrid = struct('time',0:10)

Similarly, suppose you create a 6-by-9 model array, M, by independently sampling two
variables, zeta and w. The following code attaches the (zeta,w) values to M.

[zeta,w] = ndgrid(<6 values of zeta>,<9 values of w>)

1 Functions — Alphabetical List

1-218

M.SamplingGrid = struct('zeta',zeta,'w',w)

When you display M, each entry in the array includes the corresponding zeta and w
values.

M

M(:,:,1,1) [zeta=0.3, w=5] =

 25

 s^2 + 3 s + 25

M(:,:,2,1) [zeta=0.35, w=5] =

 25

 s^2 + 3.5 s + 25

...

Default: []

Examples

Generalized Matrix With Two Tunable Parameters

This example shows how to use algebraic combinations of tunable parameters to create
the generalized matrix:

M
a b

ab
=

+È

Î
Í

˘

˚
˙

1

0
,

where a and b are tunable parameters with initial values –1 and 3, respectively.

1 Create the tunable parameters using realp.

 a = realp('a',-1);

 b = realp('b',3);

2 Define the generalized matrix using algebraic expressions of a and b.

 genmat

1-219

M = [1 a+b;0 a*b]

M is a generalized matrix whose Blocks property contains a and b. The initial value
of M is M = [1 2;0 -3], from the initial values of a and b.

3 (Optional) Change the initial value of the parameter a.

M.Blocks.a.Value = -3;

4 (Optional) Use double to display the new value of M.

double(M)

The new value of M is M = [1 0;0 -9].

More About
• “Models with Tunable Coefficients”
• “Dynamic System Models”

See Also
realp | genss | getValue | gainsurf

1 Functions — Alphabetical List

1-220

gensig
Generate test input signals for lsim

Syntax

[u,t] = gensig(type,tau)

[u,t] = gensig(type,tau,Tf,Ts)

Description

[u,t] = gensig(type,tau) generates a scalar signal u of class type and with
period tau (in seconds). The following types of signals are available.

'sin' Sine wave.
'square' Square wave.
'pulse' Periodic pulse.

gensig returns a vector t of time samples and the vector u of signal values at these
samples. All generated signals have unit amplitude.

[u,t] = gensig(type,tau,Tf,Ts) also specifies the time duration Tf of the signal
and the spacing Ts between the time samples t.

You can feed the outputs u and t directly to lsim and simulate the response of a single-
input linear system to the specified signal. Since t is uniquely determined by Tf and Ts,
you can also generate inputs for multi-input systems by repeated calls to gensig.

Examples

Generate a square wave with period 5 seconds, duration 30 seconds, and sampling every
0.1 second.

[u,t] = gensig('square',5,30,0.1)

Plot the resulting signal.

 gensig

1-221

plot(t,u)

axis([0 30 -1 2])

See Also
lsim

1 Functions — Alphabetical List

1-222

genss
Generalized state-space model

Description

Generalized state-space (genss) models are state-space models that include tunable
parameters or components. genss models arise when you combine numeric LTI
models with models containing tunable components (control design blocks). For more
information about numeric LTI models and control design blocks, see “Models with
Tunable Coefficients”.

You can use generalized state-space models to represent control systems having a
mixture of fixed and tunable components. Use generalized state-space models for
control design tasks such as parameter studies and parameter tuning with hinfstruct
(requires Robust Control Toolbox).

Construction

To construct a genss model:

• Use series, parallel, lft, or connect, or the arithmetic operators +, -, *, /, \,
and ^, to combine numeric LTI models with control design blocks.

• Use tf or ss with one or more input arguments that is a generalized matrix (genmat)
instead of a numeric array

• Convert any numeric LTI model, control design block, or slTuner interface (requires
Simulink® Control Design™), for example, sys, to genss form using:

gensys = genss(sys)

When sys is an slTuner interface, gensys contains all the tunable blocks and
analysis points specified in this interface. To compute a tunable model of a particular
I/O transfer function, call getIOTransfer(gensys,in,out). Here, in and out are
the analysis points of interest. (Use getPoints(sys) to get the full list of analysis
points.) Similarly, to compute a tunable model of a particular open-loop transfer
function, use getLoopTransfer(gensys,loc). Here, loc is the analysis point of
interest.

 genss

1-223

Properties

Blocks

Structure containing the control design blocks included in the generalized LTI model
or generalized matrix. The field names of Blocks are the Name property of each control
design block.

You can change some attributes of these control design blocks using dot notation. For
example, if the generalized LTI model or generalized matrix M contains a realp tunable
parameter a, you can change the current value of a using:

M.Blocks.a.Value = -1;

InternalDelay

Vector storing internal delays.

Internal delays arise, for example, when closing feedback loops on systems with delays,
or when connecting delayed systems in series or parallel. For more information about
internal delays, see “Closing Feedback Loops with Time Delays” in the Control System
Toolbox User's Guide.

For continuous-time models, internal delays are expressed in the time unit specified
by the TimeUnit property of the model. For discrete-time models, internal delays are
expressed as integer multiples of the sampling period Ts. For example, InternalDelay
= 3 means a delay of three sampling periods.

You can modify the values of internal delays. However, the number of entries in
sys.InternalDelay cannot change, because it is a structural property of the model.

InputDelay

Input delay for each input channel, specified as a scalar value or numeric vector. For
continuous-time systems, specify input delays in the time unit stored in the TimeUnit
property. For discrete-time systems, specify input delays in integer multiples of the
sampling period Ts. For example, InputDelay = 3 means a delay of three sampling
periods.

For a system with Nu inputs, set InputDelay to an Nu-by-1 vector. Each entry of this
vector is a numerical value that represents the input delay for the corresponding input
channel.

1 Functions — Alphabetical List

1-224

You can also set InputDelay to a scalar value to apply the same delay to all channels.

Default: 0

OutputDelay

Output delays. OutputDelay is a numeric vector specifying a time delay for each output
channel. For continuous-time systems, specify output delays in the time unit stored
in the TimeUnit property. For discrete-time systems, specify output delays in integer
multiples of the sampling period Ts. For example, OutputDelay = 3 means a delay of
three sampling periods.

For a system with Ny outputs, set OutputDelay to an Ny-by-1 vector, where each entry
is a numerical value representing the output delay for the corresponding output channel.
You can also set OutputDelay to a scalar value to apply the same delay to all channels.

Default: 0 for all output channels

Ts

Sampling time. For continuous-time models, Ts = 0. For discrete-time models, Ts is
a positive scalar representing the sampling period. This value is expressed in the unit
specified by the TimeUnit property of the model. To denote a discrete-time model with
unspecified sampling time, set Ts = -1.

Changing this property does not discretize or resample the model. Use c2d and d2c to
convert between continuous- and discrete-time representations. Use d2d to change the
sampling time of a discrete-time system.

Default: 0 (continuous time)

TimeUnit

String representing the unit of the time variable. This property specifies the units for the
time variable, the sampling time Ts, and any time delays in the model. Use any of the
following values:

• 'nanoseconds'

• 'microseconds'

• 'milliseconds'

• 'seconds'

 genss

1-225

• 'minutes'

• 'hours'

• 'days'

• 'weeks'

• 'months'

• 'years'

Changing this property has no effect on other properties, and therefore changes the
overall system behavior. Use chgTimeUnit to convert between time units without
modifying system behavior.

Default: 'seconds'

InputName

Input channel names. Set InputName to a string for single-input model. For a multi-
input model, set InputName to a cell array of strings.

Alternatively, use automatic vector expansion to assign input names for multi-input
models. For example, if sys is a two-input model, enter:

sys.InputName = 'controls';

The input names automatically expand to {'controls(1)';'controls(2)'}.

You can use the shorthand notation u to refer to the InputName property. For example,
sys.u is equivalent to sys.InputName.

Input channel names have several uses, including:

• Identifying channels on model display and plots
• Extracting subsystems of MIMO systems
• Specifying connection points when interconnecting models

Default: Empty string '' for all input channels

InputUnit

Input channel units. Use InputUnit to keep track of input signal units. For a single-
input model, set InputUnit to a string. For a multi-input model, set InputUnit to a cell
array of strings. InputUnit has no effect on system behavior.

1 Functions — Alphabetical List

1-226

Default: Empty string '' for all input channels

InputGroup

Input channel groups. The InputGroup property lets you assign the input channels of
MIMO systems into groups and refer to each group by name. Specify input groups as a
structure. In this structure, field names are the group names, and field values are the
input channels belonging to each group. For example:

sys.InputGroup.controls = [1 2];

sys.InputGroup.noise = [3 5];

creates input groups named controls and noise that include input channels 1, 2 and
3, 5, respectively. You can then extract the subsystem from the controls inputs to all
outputs using:

sys(:,'controls')

Default: Struct with no fields

OutputName

Output channel names. Set OutputName to a string for single-output model. For a multi-
output model, set OutputName to a cell array of strings.

Alternatively, use automatic vector expansion to assign output names for multi-output
models. For example, if sys is a two-output model, enter:

sys.OutputName = 'measurements';

The output names to automatically expand to
{'measurements(1)';'measurements(2)'}.

You can use the shorthand notation y to refer to the OutputName property. For example,
sys.y is equivalent to sys.OutputName.

Output channel names have several uses, including:

• Identifying channels on model display and plots
• Extracting subsystems of MIMO systems
• Specifying connection points when interconnecting models

Default: Empty string '' for all input channels

 genss

1-227

OutputUnit

Output channel units. Use OutputUnit to keep track of output signal units. For
a single-output model, set OutputUnit to a string. For a multi-output model, set
OutputUnit to a cell array of strings. OutputUnit has no effect on system behavior.

Default: Empty string '' for all input channels

OutputGroup

Output channel groups. The OutputGroup property lets you assign the output channels
of MIMO systems into groups and refer to each group by name. Specify output groups as
a structure. In this structure, field names are the group names, and field values are the
output channels belonging to each group. For example:

sys.OutputGroup.temperature = [1];

sys.InputGroup.measurement = [3 5];

creates output groups named temperature and measurement that include output
channels 1, and 3, 5, respectively. You can then extract the subsystem from all inputs to
the measurement outputs using:

sys('measurement',:)

Default: Struct with no fields

Name

System name. Set Name to a string to label the system.

Default: ''

Notes

Any text that you want to associate with the system. Set Notes to a string or a cell array
of strings.

Default: {}

UserData

Any type of data you wish to associate with system. Set UserData to any MATLAB data
type.

1 Functions — Alphabetical List

1-228

Default: []

SamplingGrid

Sampling grid for model arrays, specified as a data structure.

For model arrays that are derived by sampling one or more independent variables,
this property tracks the variable values associated with each model in the array. This
information appears when you display or plot the model array. Use this information to
trace results back to the independent variables.

Set the field names of the data structure to the names of the sampling variables. Set
the field values to the sampled variable values associated with each model in the array.
All sampling variables should be numeric and scalar valued, and all arrays of sampled
values should match the dimensions of the model array.

For example, suppose you create a 11-by-1 array of linear models, sysarr, by taking
snapshots of a linear time-varying system at times t = 0:10. The following code stores
the time samples with the linear models.

 sysarr.SamplingGrid = struct('time',0:10)

Similarly, suppose you create a 6-by-9 model array, M, by independently sampling two
variables, zeta and w. The following code attaches the (zeta,w) values to M.

[zeta,w] = ndgrid(<6 values of zeta>,<9 values of w>)

M.SamplingGrid = struct('zeta',zeta,'w',w)

When you display M, each entry in the array includes the corresponding zeta and w
values.

M

M(:,:,1,1) [zeta=0.3, w=5] =

 25

 s^2 + 3 s + 25

M(:,:,2,1) [zeta=0.35, w=5] =

 25

 genss

1-229

 s^2 + 3.5 s + 25

...

Default: []

Examples

Tunable Low-Pass Filter

This example shows how to create the low-pass filter F = a/(s + a) with one tunable
parameter a.

You cannot use ltiblock.tf to represent F, because the numerator and denominator
coefficients of an ltiblock.tf block are independent. Instead, construct F using the
tunable real parameter object realp.

1 Create a tunable real parameter.

a = realp('a',10);

The realp object a is a tunable parameter with initial value 10.
2 Use tf to create the tunable filter F:

F = tf(a,[1 a]);

F is a genss object which has the tunable parameter a in its Blocks property. You can
connect F with other tunable or numeric models to create more complex models of control
systems. For an example, see “Control System with Tunable Components”.

State-Space Model With Both Fixed and Tunable Parameters

This example shows how to create a state-space (genss) model having both fixed and
tunable parameters.

Create a state-space model having the following state-space matrices:

A
a b

ab
B C D=

+È

Î
Í

˘

˚
˙ =

-È

Î
Í

˘

˚
˙ = [] =

1

0

3 0

1 5
0 3 0 0,

.

.
, . , ,

1 Functions — Alphabetical List

1-230

where a and b are tunable parameters, whose initial values are –1 and 3, respectively.

1 Create the tunable parameters using realp.

 a = realp('a',-1);

 b = realp('b',3);

2 Define a generalized matrix using algebraic expressions of a and b.

A = [1 a+b;0 a*b]

A is a generalized matrix whose Blocks property contains a and b. The initial value
of A is M = [1 2;0 -3], from the initial values of a and b.

3 Create the fixed-value state-space matrices.

B = [-3.0;1.5];

C = [0.3 0];

D = 0;

4 Use ss to create the state-space model.

sys = ss(A,B,C,D)

sys is a generalized LTI model (genss) with tunable parameters a and b.

Control System With Both Numeric and Tunable Components

This example shows how to create a tunable model of the control system in the following
illustration.

r
-

G(s)C(s) y
+

F(s)

S(s)

The plant response G(s) = 1/(s + 1)2. The model of sensor dynamics is S(s) = 5/(s + 4). The
controller C is a tunable PID controller, and the prefilter F = a/(s + a) is a low-pass filter
with one tunable parameter, a.

Create models representing the plant and sensor dynamics.

 genss

1-231

Because the plant and sensor dynamics are fixed, represent them using numeric LTI
models zpk and tf.

G = zpk([],[-1,-1],1);

S = tf(5,[1 4]);

Create a tunable representation of the controller C.

C = ltiblock.pid('C','PID');

C =

 Parametric continuous-time PID controller "C" with formula:

 1 s

 Kp + Ki * --- + Kd * --------

 s Tf*s+1

 and tunable parameters Kp, Ki, Kd, Tf.

Type "pid(C)" to see the current value and "get(C)" to see all properties.

C is a ltiblock.pid object, which is a Control Design Block with a predefined
proportional-integral-derivative (PID) structure.

Create a model of the filter F = a/(s + a) with one tunable parameter.

a = realp('a',10);

F = tf(a,[1 a]);

a is a realp (real tunable parameter) object with initial value 10. Using a as a coefficient
in tf creates the tunable genss model object F.

Connect the models together to construct a model of the closed-loop response from r to y.

T = feedback(G*C,S)*F

T is a genss model object. In contrast to an aggregate model formed by connecting only
Numeric LTI models, T keeps track of the tunable elements of the control system. The
tunable elements are stored in the Blocks property of the genss model object.

Display the tunable elements of T.

T.Blocks

1 Functions — Alphabetical List

1-232

ans =

 C: [1x1 ltiblock.pid]

 a: [1x1 realp]

If you have Robust Control Toolbox software, you can use tuning commands such as
systune to tune the free parameters of T to meet design requirements you specify.

More About

Tips

• You can manipulate genss models as ordinary ss models. Analysis commands such
as bode and step evaluate the model by replacing each tunable parameter with its
current value.

• “Models with Tunable Coefficients”
• “Dynamic System Models”
• “Control Design Blocks”

See Also
realp | genmat | genfrd | tf | ss | getValue | ltiblock.pid | feedback |
connect

 get

1-233

get
Access model property values

Syntax

Value = get(sys,'PropertyName')

Struct = get(sys)

Description

Value = get(sys,'PropertyName') returns the current value of the property
PropertyName of the “model object” sys. The string 'PropertyName' can be the
full property name (for example, 'UserData') or any unambiguous case-insensitive
abbreviation (for example, 'user'). See reference pages for the individual model object
types for a list of properties available for that model.

Struct = get(sys) converts the TF, SS, or ZPK object sys into a standard MATLAB
structure with the property names as field names and the property values as field values.

Without left-side argument,

get(sys)

displays all properties of sys and their values.

Examples

Consider the discrete-time SISO transfer function defined by

h = tf(1,[1 2],0.1,'inputname','voltage','user','hello')

You can display all properties of h with

get(h)

 num: {[0 1]}

 den: {[1 2]}

1 Functions — Alphabetical List

1-234

 ioDelay: 0

 Variable: 'z'

 Ts: 0.1

 InputDelay: 0

 OutputDelay: 0

 InputName: {'voltage'}

 OutputName: {''}

 InputGroup: [1x1 struct]

 OutputGroup: [1x1 struct]

 Name: ''

 Notes: {}

 UserData: 'hello'

or query only about the numerator and sample time values by

get(h,'num')

ans =

 [1x2 double]

and

get(h,'ts')

ans =

 0.1000

Because the numerator data (num property) is always stored as a cell array, the first
command evaluates to a cell array containing the row vector [0 1].

More About

Tips

An alternative to the syntax

Value = get(sys,'PropertyName')

is the structure-like referencing

Value = sys.PropertyName

For example,

 get

1-235

sys.Ts

sys.a

sys.user

return the values of the sample time, A matrix, and UserData property of the (state-
space) model sys.

See Also
set | ssdata | tfdata | zpkdata | frdata | idssdata | polydata

1 Functions — Alphabetical List

1-236

getBlockValue
Current value of Control Design Block in Generalized Model

Syntax
val = getBlockValue(M,blockname)

Description
val = getBlockValue(M,blockname) returns the current value of the “Control
Design Block” blockname in the “Generalized Model” M. (For uncertain blocks, the
“current value” is the nominal value of the block.)

Input Arguments
M

“Generalized LTI Model” or “Generalized matrix”.

blockname

Name of the “Control Design Block” in the model M whose current value is evaluated.

To get a list of the Control Design Blocks in M, enter M.Blocks.

Output Arguments
val

Numerical LTI model or numerical value, equal to the current value of the Control
Design Block blockname.

Examples
Create a tunable genss model, and evaluate the current value of the Control Design
Blocks of the model.

 getBlockValue

1-237

G = zpk([],[-1,-1],1);

C = ltiblock.pid('C','PID');

a = realp('a',10);

F = tf(a,[1 a]);

T = feedback(G*C,1)*F;

Cval = getBlockValue(T,'C')

Continuous-time I-only controller:

 1

Ki * ---

 s

With Ki = 0.001

Cval is a numeric pid controller object.

aval = getBlockValue(T,'a')

aval =

 10

aval is a numeric scalar, because a is a real scalar parameter.

See Also
setBlockValue | showBlockValue | getValue

1 Functions — Alphabetical List

1-238

getCompSensitivity
Complementary sensitivity function from generalized model of control system

Syntax

T = getCompSensitivity(CL,location)

T = getSensitivity(CL,location,opening)

Description

T = getCompSensitivity(CL,location) returns the complementary sensitivity
measured at the specified location for a generalized model of a control system.

T = getSensitivity(CL,location,opening) specifies additional loop openings
for the complementary sensitivity function calculation. Use an opening, for example, to
calculate the complementary sensitivity function of an inner loop, with the outer loop
open.

If opening and location list the same point, the software opens the loop after adding the
disturbance signal at the point.

Examples

Complementary Sensitivity Function at a Location

Compute the complementary sensitivity at the plant output, X.

r
-

G(s)C(s) y
+

X

Create a model of the system by specifying and connecting a numeric LTI plant model G,
a tunable controller C, and the AnalysisPoint block X. Use the AnalysisPoint block

 getCompSensitivity

1-239

to mark the location where you assess the complementary sensitivity (plant output in
this example).

G = tf([1],[1 5]);

C = ltiblock.pid('C','p');

C.Kp.Value = 3;

X = AnalysisPoint('X');

CL = feedback(G*C,X);

CL is a genss model that represents the closed-loop response of the control system from r
to y. The model contains the AnalysisPoint block, X, that identifies the analysis-point
location.

Calculate the complementary sensitivity, T, at X.

T = getCompSensitivity(CL,'X');

tf(T)

ans =

 From input "X" to output "X":

 -3

 s + 8

Continuous-time transfer function.

Specify Additional Loop Opening for Complementary Sensitivity Function Calculation

Calculate the inner-loop sensitivity at the output of G2, with the outer loop open.

r
-

G2 y
+

-

C1

+

G1C2

X2

X1

Create a model of the system by specifying and connecting the numeric plant models,
tunable controllers, and AnalysisPoint blocks. G1 and G2 are plant models, C1 and C2

1 Functions — Alphabetical List

1-240

are tunable controllers, and X1 and X2 are AnalysisPoint blocks that mark potential
loop-opening locations.

G1 = tf(10,[1 10]);

G2 = tf([1 2],[1 0.2 10]);

C1 = ltiblock.pid('C','pi');

C2 = ltiblock.gain('G',1);

X1 = AnalysisPoint('X1');

X2 = AnalysisPoint('X2');

CL = feedback(G1*feedback(G2*C2,X2)*C1,X1);

Calculate the complementary sensitivity, T, at X2, with the outer loop open at X1.

T = getCompSensitivity(CL,'X2','X1');

tf(T)

ans =

 From input "X2" to output "X2":

 -s - 2

 s^2 + 1.2 s + 12

Continuous-time transfer function.

Input Arguments

CL — Model of control system
generalized state-space model

Model of a control system, specified as a Generalized State-Space Model (genss).

Locations at which you can perform sensitivity analysis or open loops are marked by
AnalysisPoint blocks in CL. Use getPoints(CL) to get the list of such locations.

location — Location
string | cell array of strings

Location at which you calculate the complementary sensitivity function, specified as
a string or cell array of strings. To extract the complementary sensitivity function at
multiple locations, use a cell array of strings.

 getCompSensitivity

1-241

Each string in location must match an analysis point in CL. Analysis points are marked
using AnalysisPoint blocks. Use getPoints(CL) to get the list of available analysis
points in CL.
Example: 'u' or {'u','y'}

opening — Additional loop opening
string | cell array of strings

Additional loop opening used to calculate the complementary sensitivity function,
specified as a string or cell array of strings. To open the loop at multiple locations, use a
cell array of strings.

Each string in opening must match an analysis point in CL. Analysis points are marked
using AnalysisPoint blocks. Use getPoints(CL) to get the list of available analysis
points in CL.

Use an opening, for example, to calculate the complementary sensitivity function of an
inner loop, with the outer loop open.

If opening and location list the same point, the software opens the loop after adding the
disturbance signal at the point.
Example: 'y_outer' or {'y_outer','y_outer2'}

Output Arguments

T — Complementary sensitivity function
generalized state-space model

Complementary sensitivity function of the control system, T, measured at location,
returned as a Generalized State-Space Model (genss).

• If location specifies a single analysis point, then T is a SISO genss model.
• If location is a string specifying a vector signal, or a cell array identifying multiple

analysis points, then T is a MIMO genss model.

1 Functions — Alphabetical List

1-242

More About

Complementary Sensitivity

The complementary sensitivity function, T, at a point is the closed-loop transfer function
around the feedback loop measured at the specified location. It is related to the open-loop
transfer function, L, and the sensitivity function, S, at the same point as follows:

T
L

L
S=

-

= -

1
1.

Use getLoopTransfer and getSensitivity to compute L and S.

Consider the following model:

+

-
K G

e u yr

The complementary sensitivity, T, at y is defined as the transfer function from dy to y.

+

-
K G

e ur

+

dy

+

 y

Observe that, in contrast to the sensitivity function, the disturbance, dy, is added after
the measurement, y.

y GK y dy

y GKy GKdy

I GK y GKdy

y I GK GK

T

= - +

Æ = - -

Æ + = -

Æ = - +
-

()

()

()
1

1 2444 34444
dy.

 getCompSensitivity

1-243

Here, I is an identity matrix of the same size as GK. The complementary sensitivity
transfer function at y is equal to -1 times the closed-loop transfer function from r to y.

Complementary sensitivity at multiple locations, for example, u and y, is defined as the
MIMO transfer function from the disturbances to measurements:

+

-
K G

er

+

dy

+

 y

+

 u
du

+

T
T T

T T

du u dy u

du y dy y

=
È

Î
Í
Í

˘

˚
˙
˙

Æ Æ

Æ Æ

.

See Also
| AnalysisPoint | genss | getCompSensitivity | getIOTransfer |
getLoopTransfer | getPoints | getSensitivity | getValue | systune

1 Functions — Alphabetical List

1-244

getDelayModel

State-space representation of internal delays

Syntax

[H,tau] = getDelayModel(sys)

[A,B1,B2,C1,C2,D11,D12,D21,D22,E,tau] = getDelayModel(sys)

Description

[H,tau] = getDelayModel(sys) decomposes a state-space model sys with internal
delays into a delay-free state-space model, H, and a vector of internal delays, tau. The
relationship among sys, H, and tau is shown in the following diagram.

w

u

z

y

H

exp(-tau*s)

sys

[A,B1,B2,C1,C2,D11,D12,D21,D22,E,tau] = getDelayModel(sys) returns
the set of state-space matrices and internal delay vector, tau, that explicitly describe
the state-space model sys. These state-space matrices are defined by the state-space
equations:

• Continuous-time sys:

 getDelayModel

1-245

E
dx t

dt
Ax t B u t B w t

y t C x t D u t D w t

z t

()
= () + () + ()

() = () + () + ()

(

1 2

1 11 12

)) = () + () + ()

() = -()

C x t D u t D w t

w t z t

2 21 22

t

• Discrete-time sys:

Ex k Ax k B u k B w k

y k C x k D u k D w k

z k

+[] = [] + [] + []

[] = []+ []+ []

[]

1
1 2

1 11 12

== [] + [] + []

[] = -[]

C x k D u k D w k

w k z k

2 21 22

t

Input Arguments

sys

Any state-space (ss) model.

Output Arguments

H

Delay-free state-space model (ss). H results from decomposing sys into a delay-free
component and a component exp(-tau*s) that represents all internal delays.

If sys has no internal delays, H is equal to sys.

tau

Vector of internal delays of sys, expressed in the time units of sys. The vector tau results
from decomposing sys into a delay-free state-space model H and a component exp(-
tau*s) that represents all internal delays.

If sys has no internal delays, tau is empty.

1 Functions — Alphabetical List

1-246

A,B1,B2,C1,C2,D11,D12,D21,D22,E

Set of state-space matrices that, with the internal delay vector tau, explicitly describe the
state-space model sys.

For explicit state-space models (E = I, or sys.e = []), the output E = [].

If sys has no internal delays, the outputs B2, C2, D12, D21, and D22 are all empty ([]).

Examples

Get Delay-Free State-Space Model and Internal Delay

Decompose the following closed-loop system with internal delay into a delay-free
component and a component representing the internal delay.

-

C G

yr e-2.1s

s +10

2.3

s
0.5 +

Create the closed-loop model sys from r to y.

G = tf(1,[1 10],'InputDelay',2.1);

C = pid(0.5,2.3);

sys = feedback(C*G,1);

sys is a state-space (ss) model with an internal delay arising from the feedback loop.

Decompose sys into a delay-free state-space model and the value of the internal delay.

[H,tau] = getDelayModel(sys);

More About
• “Internal Delays”

See Also
setDelayModel

 getGainCrossover

1-247

getGainCrossover
Crossover frequencies for specified gain

Syntax

wc = getGainCrossover(sys,gain)

Description

wc = getGainCrossover(sys,gain) returns the vector wc of frequencies at which
the frequency response of the dynamic system model, sys, has principal gain of gain.
For SISO systems, the principal gain is the frequency response. For MIMO models, the
principal gain is the largest singular value of sys.

Examples

Unity Gain Crossover

Find the 0dB crossover of a single-loop control system with plant

G s

s

() =

+()

1

1
3

and PI controller

C s
s

() = +1 14
0 454

.
.

.

G = zpk([],[-1,-1,-1],1);

C = pid(1.14,0.454);

sys = G*C;

wc = getGainCrossover(sys,1)

wc =

1 Functions — Alphabetical List

1-248

 0.5214

The 0 dB crossovers are the frequencies at which the open-loop response sys = G*C
has unity gain. Because this system only crosses unity gain once, getGainCrossover
returns a single value.

Notch Filter Stopband

Find the 20 dB stopband of

sys
s s

s s

=
+ +

+ +

2

2

0 05 100

5 100

.
.

sys is a notch filter centered at 10 rad/s.

sys = tf([1 0.05 100],[1 5 100]);

gain = db2mag(-20);

wc = getGainCrossover(sys,gain)

wc =

 9.7531

 10.2531

The db2mag command converts the gain value of –20 dB to absolute units. The
getGainCrossover command returns the two frequencies that define the stopband.

Input Arguments

sys — Input dynamic system
dynamic system model

Input dynamic system, specified as any SISO or MIMO dynamic system model.

gain — Input gain
positive real scalar

Input gain in absolute units, specified as a positive real scalar.

• If sys is a SISO model, the gain is the frequency response magnitude of sys.

 getGainCrossover

1-249

• If sys is a MIMO model, gain means the largest singular value of sys.

Output Arguments

wc — Crossover frequencies
column vector

Crossover frequencies, returned as a column vector. This vector lists the frequencies at
which the gain or largest singular value of sys is gain.

More About

Algorithms

getGainCrossover computes gain crossover frequencies using structure-preserving
eigensolvers from the SLICOT library. For more information about the SLICOT library,
see http://slicot.org.
• “Dynamic System Models”

See Also
bandwidth | bode | freqresp | getPeakGain | sigma

http://slicot.org

1 Functions — Alphabetical List

1-250

getIOTransfer
Closed-loop transfer function from generalized model of control system

Syntax

H = getIOTransfer(T,in,out)

H = getIOTransfer(T,in,out,openings)

Description

H = getIOTransfer(T,in,out) returns the transfer function from specified inputs to
specified outputs of a control system, computed from a closed-loop generalized model of
the control system.

H = getIOTransfer(T,in,out,openings) returns the transfer function calculated
with one or more loops open.

Examples

Closed-Loop Responses of Control System Model

Analyze responses of a control system by using getIOTransfer to compute responses
between various inputs and outputs of a closed-loop model of the system.

Consider the following control system.

r
-

G2 y
+

-

C1

+

G1C2

X2

X1

d2

d1

 getIOTransfer

1-251

Create a genss model of the system by specifying and connecting the numeric plant
models G1 and G2, the tunable controllers C1, and the AnalysisPoint blocks X1 and X2
that mark potential loop-opening or signal injection sites.

G1 = tf(10,[1 10]);

G2 = tf([1 2],[1 0.2 10]);

C1 = ltiblock.pid('C','pi');

C2 = ltiblock.gain('G',1);

X1 = AnalysisPoint('X1');

X2 = AnalysisPoint('X2');

T = feedback(G1*feedback(G2*C2,X2)*C1,X1);

T.InputName = 'r';

T.OutputName = 'y';

If you tuned the free parameters of this model (for example, using the Robust Control
Toolbox tuning command systune), you might want to analyze the tuned system
performance by examining various system responses.

For example, examine the response at the output, y, to a disturbance injected at the point
d1.

H1 = getIOTransfer(T,'X1','y');

H1 represents the closed-loop response of the control system to a disturbance injected at
the implicit input associated with the AnalysisPoint block X1, which is the location of
d1:

H1 is a genss model that includes the tunable blocks of T. If you have tuned the free
parameters of T, H1 allows you to validate the disturbance response of your tuned
system. For example, you can use analysis commands such as bodeplot or stepplot to
analyze H1. You can also use getValue to obtain the current value of H1, in which all the
tunable blocks are evaluated to their current numeric values.

Similarly, examine the response at the output to a disturbance injected at the point d2.

H2 = getIOTransfer(T,'X2','y');

1 Functions — Alphabetical List

1-252

You can also generate a two-input, one-output model representing the response of
the control system to simultaneous disturbances at both d1 and d2. To do so, provide
getIOTransfer with a cell array that specifies the multiple input locations.

H = getIOTransfer(T,{'X1','X2'},'y');

Responses with Some Loops Open and Others Closed

Compute the response from r to y of the following cascaded control system, with the inner
loop open, and the outer loop closed.

r
-

G2 y
+

-

C1

+

G1C2

X2

X1

d2

d1

Create a genss model of the system by specifying and connecting the numeric plant
models G1 and G2, the tunable controllers C1, and the AnalysisPoint blocks X1 and X2
that mark potential loop-opening or signal injection sites.

G1 = tf(10,[1 10]);

G2 = tf([1 2],[1 0.2 10]);

C1 = ltiblock.pid('C','pi');

C2 = ltiblock.gain('G',1);

X1 = AnalysisPoint('X1');

X2 = AnalysisPoint('X2');

T = feedback(G1*feedback(G2*C2,X2)*C1,X1);T.InputName = 'r';

T.OutputName = 'y';

If you tuned the free parameters of this model (for example, using the Robust Control
Toolbox tuning command systune), you might want to analyze the tuned system
performance by examining various system responses.

For example, compute the response of the system with the inner loop open, and the outer
loop closed.

H = getIOTransfer(T,'r','y','X2');

 getIOTransfer

1-253

By default, the loops are closed at the analysis points X1 and X2. Specifying 'X2' for the
openings argument causes getIOTransfer to open the loop at X2 for the purposes of
computing the requested transfer from r to y. The switch at X1 remains closed for this
computation.

Input Arguments

T — Model of control system
generalized state-space model

Model of a control system, specified as a Generalized State-Space (genss) Model.

in — Input to extracted transfer function
string | cell array of strings

Input to extracted transfer function, specified as a string or cell array of strings. To
extract a multiple-input transfer function from the control system, use a cell array of
strings. Each string in in must match either:

• An input of the control system model T (in other words, a string contained in
T.InputName).

• An analysis point in T, corresponding to a channel of an AnalysisPoint block in T.
Use getpoints(T) to get a full list of available analysis points in T.

When you specify an analysis point as an input in, getIOTransfer uses the input
implicitly associated with the AnalysisPoint channel, arranged as follows.

This input signal models a disturbance entering at the output of the switch.

If an analysis point has the same name as an input of T, then getIOTransfer uses the
input of T.

Example: {'r','X1'}

1 Functions — Alphabetical List

1-254

out — Output of extracted transfer function
string | cell array of strings

Output of extracted transfer function, specified as a string or cell array of strings. To
extract a multiple-output transfer function from the control system, use a cell array of
strings. Each string in out must match either:

• An output of the control system model T (in other words, a string contained in
T.OutputName).

• An analysis point in T, corresponding to a channel of an AnalysisPoint block in T.
Use getPoints(T) to get a full list of available analysis points in T.

When you specify an analysis point as an output out, getIOTransfer uses the
output implicitly associated with the AnalysisPoint channel, arranged as follows.

If an analysis point has the same name as an output of T, then getIOTransfer uses the
output of T.

Example: {'y','X2'}

openings — Locations for opening feedback loops
string | cell array of strings

Locations for opening feedback loops for computation of the response from in to out,
specified as string or cell array of strings that identify analysis points in T. Analysis
points are marked by AnalysisPoint blocks in T. Use getPoints(T) to get a full list
of available loop-opening sites in T.

Use openings when you want to compute the response from in to out with some loops in
the control system open. For example, in a cascaded loop configuration, you can calculate
the response from the system input to the system output with the inner loop open.

 getIOTransfer

1-255

Output Arguments

H — Closed-loop transfer function
generalized state-space model

Closed-loop transfer function of the control system T from in to out, returned as a
Generalized State-Space (genss) model.

• If both in and out specify a single signal, then T is a SISO genss model.
• If in or out identifies multiple signals, then T is a MIMO genss model.

More About

Tips

• You can use getIOTransfer to extract various subsystem responses, given a
generalized model of the overall control system. This is useful for validating responses
of a control system that you tune with the Robust Control Toolbox tuning command
systune.

For example, in addition to evaluating the overall response of a tuned control system
from inputs to outputs, you can use getIOTransfer to extract the transfer function
from a disturbance input to a system output. Evaluate the responses of that transfer
function (such as with step or bode) to confirm that the tuned system meets your
disturbance rejection requirements.

• getIOTransfer is the genss equivalent to the Simulink Control Design
getIOTransfer command, which works with the slTuner and slLinearizer
interfaces. Use the Simulink Control Design command when your control system is
modeled in Simulink.

See Also
| AnalysisPoint | genss | getIOTransfer | getLoopTransfer | getPoints |
systune

1 Functions — Alphabetical List

1-256

getLFTModel
Decompose generalized LTI model

Syntax

[H,B,S] = getLFTModel(M)

Description

[H,B,S] = getLFTModel(M) extracts the components H, B, and S that make up the
“Generalized matrix” or “Generalized LTI model” M. The model M decomposes into H, B,
and S. These components are related to M as shown in the following illustration.

H

B
1
-S

1

.

 .

 .

.

.

.

0

0 . . .

.

.

.

 . . .

B
k
-S

k

M

The cell array B contains the “Control Design Blocks” of M. The component H is a
numeric matrix, ss model, or frd model that describes the fixed portion of M and the

 getLFTModel

1-257

interconnections between the blocks of B. The matrix S = blkdiag(S1,...,Sk)
contains numerical offsets that ensure that the interconnection is well-defined when the
current (nominal) value of M is finite.

You can recombine H, B, and S into M using lft, as follows:

M = lft(H,blkdiag(B{:})-S);

Input Arguments

M

Generalized LTI model (genss or genfrd) or Generalized matrix (genmat).

Output Arguments

H

Matrix, ss model, or frd model describing the numeric portion of M and how it the
numeric portion is connected to the Control Design Blocks of M.

B

Cell array of Control Design Blocks (for example, realp or ltiblock.ss) of M.

S

Matrix of offset values. The software might introduce offsets when you build a
Generalized model to ensure that H is finite when the current (nominal) value of M is
finite.

More About

Tips

• getLFTModel gives you access to the internal representation of Generalized LTI
models and Generalized Matrices. For more information about this representation,
see “Internal Structure of Generalized Models”.

1 Functions — Alphabetical List

1-258

• “Generalized Matrices”
• “Generalized and Uncertain LTI Models”
• “Models with Tunable Coefficients”
• “Internal Structure of Generalized Models”

See Also
genfrd | genss | genmat | lft | getValue | nblocks

 getLoopTransfer

1-259

getLoopTransfer
Open-loop transfer function of control system

Syntax

L = getLoopTransfer(T,Locations)

L = getLoopTransfer(T,Locations,sign)

L = getLoopTransfer(T,Locations,sign,openings)

Description

L = getLoopTransfer(T,Locations) returns the point-to-point open-loop transfer
function of a control system measured at specified analysis points. The point-to-point
open-loop transfer function is the open-loop response obtained by injecting signals at the
specified locations and measuring the return signals at the same locations.

L = getLoopTransfer(T,Locations,sign) specifies the feedback sign for
calculating the open-loop response. The relationship between the closed-loop response T
and the open-loop response L is T = feedback(L,1,sign).

L = getLoopTransfer(T,Locations,sign,openings) specifies additional loop-
opening locations to open for computing the open-loop response at Locations.

Examples

Open-Loop Transfer Function at Analysis Point

Compute the open-loop response of the following control system model at an analysis
point specified by an AnalysisPoint block, X.

r
-

G(s)C(s) y
+

X

1 Functions — Alphabetical List

1-260

Create a model of the system by specifying and connecting a numeric LTI plant model G,
a tunable controller C, and the AnalysisPoint block X.

G = tf([1 2],[1 0.2 10]);

C = ltiblock.pid('C','pi');

X = AnalysisPoint('X');

T = feedback(G*X*C,1);

T is a genss model that represents the closed-loop response of the control system from r
to y. The model contains the AnalysisPoint block X that identifies the potential loop-
opening location.

Calculate the open-loop point-to-point loop transfer at the location X.

L = getLoopTransfer(T,'X');

This command computes the positive-feedback transfer function you would obtain by
opening the loop at X, injecting a signal into G, and measuring the resulting response at
the output of C. By default, getLoopTransfer computes the positive feedback transfer
function. In this example, the positive feedback transfer function is L(s) = –G(s)C(s)

The output L is a genss model that includes the tunable block C. You can use getValue
to obtain the current value of L, in which all the tunable blocks of L are evaluated to their
current numeric value.

Negative-Feedback Open-Loop Transfer Function

Compute the negative-feedback open-loop transfer of the following control system model
at an analysis point specified by an AnalysisPoint block, X.

r
-

G(s)C(s) y
+

X

Create a model of the system by specifying and connecting a numeric LTI plant model G,
a tunable controller C, and the AnalysisPoint block X.

G = tf([1 2],[1 0.2 10]);

C = ltiblock.pid('C','pi');

X = AnalysisPoint('X');

T = feedback(G*X*C,1);

 getLoopTransfer

1-261

T is a genss model that represents the closed-loop response of the control system from r
to y. The model contains the AnalysisPoint block X that identifies the potential loop-
opening location.

Calculate the open-loop point-to-point loop transfer at the location X.

L = getLoopTransfer(T,'X',-1);

This command computes the open-loop transfer function from the input of G to the output
of C, assuming that the loop is closed with negative feedback. That is, the relationships
between L and T is given by T = feedback(L,1). In this example, the positive feedback
transfer function is L(s) = G(s)C(s)

Transfer Function with Additional Loop Openings

Compute the open-loop response of the inner loop of the following cascaded control
system, with the outer loop open.

r
-

G2 y
+

-

C1

+

G1C2

X2

X1

Create a model of the system by specifying and connecting the numeric plant models G1
and G2, the tunable controllers C1, and the AnalysisPoint blocks X1 and X2 that mark
potential loop-opening locations.

G1 = tf(10,[1 10]);

G2 = tf([1 2],[1 0.2 10]);

C1 = ltiblock.pid('C','pi');

C2 = ltiblock.gain('G',1);

X1 = AnalysisPoint('X1');

X2 = AnalysisPoint('X2');

T = feedback(G1*feedback(G2*C2,X2)*C1,X1);

Compute the negative-feedback open-loop response of the inner loop, at the location X2,
with the outer loop opened at X1.

L = getLoopTransfer(T,'X2',-1,'X1');

1 Functions — Alphabetical List

1-262

By default, the loop is closed at the analysis-point location marked by the
AnalysisPoint block X1. Specifying 'X1' for the openings argument causes
getLoopTransfer to open the loop at X1 for the purposes of computing the requested
loop transfer at X2. In this example, the negative-feedback open-loop response
L(s) = G2(s)C2(s).

Input Arguments

T — Model of control system
generalized state-space model

Model of a control system, specified as a Generalized State-Space (genss) Model.
Locations at which you can open loops and perform open-loop analysis are marked by
AnalysisPoint blocks in T.

Locations — Analysis-point locations
string | cell array of strings

Analysis-point locations in the control system model at which to compute the open-
loop point-to-point response, specified as a string or a cell array of strings that identify
analysis-point locations in T.

Analysis-point locations are marked by AnalysisPoint blocks in T. An
AnalysisPoint block can have single or multiple channels. The Location property of
an AnalysisPoint block gives names to these feedback channels.

The name of any channel in a AnalysisPoint block in T is a valid entry for the
Locations argument to getLoopTransfer. Use getPoints(T) to get a full list of
available analysis points in T.

getLoopTransfer computes the open-loop response you would obtain by injecting a
signal at the implicit input associated with an AnalysisPoint channel, and measuring
the response at the implicit output associated with the channel. These implicit inputs
and outputs are arranged as follows.

 getLoopTransfer

1-263

L is the open-loop transfer function from in to out.

sign — Feedback sign
+1 (default) | -1

Feedback sign, specified as +1 or -1 The feedback sign determines the sign of the open-
loop transfer function.

• +1 — Compute the positive-feedback loop transfer. In this case, the relationship
between the closed-loop response T and the open-loop response L is T =
feedback(L,1,+1).

• -1 — Compute the negative-feedback loop transfer. In this case, the relationship
between the closed-loop response T and the open-loop response L is T =
feedback(L,1).

Choose a feedback sign that is consistent with the conventions of the analysis you intend
to perform with the loop transfer function. For example, consider the following system,
where T is the closed-loop transfer function from r to y.

r
-

G(s)C(s) y
+

X

To compute the stability margins of this system with the margin command, which
assumes negative feedback, you need to use the negative-feedback open-loop response.
Therefore, you can use L = getLoopTransfer(T,'X',-1) to obtain the negative-
feedback transfer function L = GC.

openings — Additional locations for opening feedback loops
string | cell array of strings

Additional locations for opening feedback loops for computation of the open-loop
response, specified as string or cell array of strings that identify analysis-point locations
in T. Analysis-point locations are marked by AnalysisPoint blocks in T. Any channel
name contained in the Location property of an AnalysisPoint block in T is a valid
entry for openings.

Use openings when you want to compute the open-loop response at one analysis-point
location with other loops also open at other locations. For example, in a cascaded loop

1 Functions — Alphabetical List

1-264

configuration, you can calculate the inner loop open-loop response with the outer loop
also open. Use getPoints(T) to get a full list of available analysis-point locations in T.

Output Arguments

L — Point-to-point open-loop response
generalized state-space model

Point-to-point open-loop response of the control system T measured at the analysis points
specified by Locations, returned as a Generalized State-Space (genss) Model.

• If Locations is a string specifying a single analysis point, then L is a SISO genss
model. In this case, L represents the response obtained by opening the loop at
Locations, injecting signals and measuring the return signals at the same location.

• If Locations is a string specifying a vector signal, or a cell array identifying multiple
analysis points, then L is a MIMO genss model. In this case, L represents the open-
loop MIMO response obtained by opening loops at all locations listed in Locations,
injecting signals and measuring the return signals at those locations.

More About

Tips

• You can use getLoopTransfer to extract open-loop responses given a generalized
model of the overall control system. This is useful, for example, for validating open-
loop responses of a control system that you tune with the Robust Control Toolbox
tuning command systune.

• getLoopTransfer is the genss equivalent to the Simulink Control Design command
getLoopTransfer, which works with the slTuner and slLinearizer interfaces.
Use the Simulink Control Design command when your control system is modeled in
Simulink.

See Also
AnalysisPoint | genss | getIOTransfer | getLoopTransfer | getPoints |
systune

 getNominal

1-265

getNominal
Nominal value of Generalized LTI model or Generalized matrix

Note: getNominal has been removed. Use getValue instead.

1 Functions — Alphabetical List

1-266

getoptions
Return @PlotOptions handle or plot options property

Syntax

p = getoptions(h)

p = getoptions(h,propertyname)

Description

p = getoptions(h) returns the plot options handle associated with plot handle h. p
contains all the settable options for a given response plot.

p = getoptions(h,propertyname) returns the specified options property,
propertyname, for the plot with handle h. You can use this to interrogate a plot handle.
For example,

p = getoptions(h,'Grid')

returns 'on' if a grid is visible, and 'off' when it is not.

For a list of the properties and values available for each plot type, see “Properties and
Values Reference”.

See Also
setoptions

 getPeakGain

1-267

getPeakGain

Peak gain of dynamic system frequency response

Syntax

gpeak = getPeakGain(sys)

gpeak = getPeakGain(sys,tol)

gpeak = getPeakGain(sys,tol,fband)

[gpeak,fpeak] = getPeakGain(___)

Description

gpeak = getPeakGain(sys) returns the peak input/output gain in absolute units of
the dynamic system model, sys.

• If sys is a SISO model, then the peak gain is the largest value of the frequency
response magnitude.

• If sys is a MIMO model, then the peak gain is the largest value of the frequency
response 2-norm (the largest singular value across frequency) of sys. This quantity is
also called the L∞ norm of sys, and coincides with the H∞ norm for stable systems.

• If sys is a model that has tunable or uncertain parameters, getPeakGain evaluates
the peak gain at the current or nominal value of sys.

• If sys is a model array, getPeakGain returns an array of the same size as sys, where
gpeak(k) = getPeakGain(sys(:,:,k)) .

gpeak = getPeakGain(sys,tol) returns the peak gain of sys with relative accuracy
tol.

gpeak = getPeakGain(sys,tol,fband) returns the peak gain in the frequency
interval fband.

[gpeak,fpeak] = getPeakGain(___) also returns the frequency fpeak at which
the gain achieves the peak value gpeak, and can include any of the input arguments in
previous syntaxes.

1 Functions — Alphabetical List

1-268

Examples

Peak Gain of Transfer Function

Compute the peak gain of the resonance in the transfer function

sys

s s

=

+ +

90

1 5 90
2

.

.

sys = tf(90,[1,1.5,90]);

gpeak = getPeakGain(sys);

The getPeakGain command returns the peak gain in absolute units.

Peak Gain with Specified Accuracy

Compute the peak gain of the resonance in the transfer function sys

s s

=

+ +

90

1 5 90
2

.

.

with a relative accuracy of 0.01%.

sys = tf(90,[1,1.5,90]);

gpeak = getPeakGain(sys,0.0001);

The second argument specifies a relative accuracy of 0.0001. The getPeakGain
command returns a value that is within 0.01% of the true peak gain of the transfer
function.

Peak Gain Within Specified Band

Compute the peak gain of the second resonance in the transfer function

sys

s s s s

=
+ +

Ê

Ë
Á

ˆ

¯
˜

+ +

Ê

Ë
Á

ˆ

¯
˜

1

0 2 1

100

100
2 2

.

.

sys is the product of resonances at 1 rad/s and 10 rad/s.

sys = tf(1,[1,.2,1])*tf(100,[1,1,100]);

fband = [8,12];

gpeak = getPeakGain(sys,0.01,fband);

 getPeakGain

1-269

The fband argument causes getPeakGain to return the local peak gain between 8 and
12 rad/s.

Frequency of Peak Gain

Identify which of the two resonances has higher gain in the transfer function

sys

s s s s

=
+ +

Ê

Ë
Á

ˆ

¯
˜

+ +

Ê

Ë
Á

ˆ

¯
˜

1

0 2 1

100

100
2 2

.

.

sys is the product of resonances at 1 rad/s and 10 rad/s.

sys = tf(1,[1,.2,1])*tf(100,[1,1,100]);

[gpeak,fpeak] = getPeakGain(sys)

gpeak =

 5.0502

fpeak =

 1.0000

fpeak is the frequency corresponding to the peak gain gpeak. The peak at 1 rad/s is the
overall peak gain of sys.

Input Arguments

sys — Input dynamic system
dynamic system model | model array

Input dynamic system, specified as any dynamic system model or model array. sys can be
SISO or MIMO.

tol — Relative accuracy
0.01 (default) | positive real scalar

Relative accuracy of the peak gain, specified as a positive real scalar value.
getPeakGain calculates gpeak such that the fractional difference between gpeak and
the true peak gain of sys is no greater than tol.

1 Functions — Alphabetical List

1-270

fband — Frequency interval
[0,Inf] (default) | 1-by-2 vector of positive real values

Frequency interval in which to calculate the peak gain, specified as a 1-by-2 vector of
positive real values. Specify fband as a row vector of the form [fmin,fmax].

Output Arguments

gpeak — Peak gain of dynamic system
scalar | array

Peak gain of the dynamic system model or model array sys, returned as a scalar value or
an array.

• If sys is a single model, then gpeak is a scalar value.
• If sys is a model array, then gpeak is an array of the same size as sys, where

gpeak(k) = getPeakGain(sys(:,:,k)).

fpeak — Frequency of peak gain
nonnegative real scalar | array of nonnegative real values

Frequency at which the gain achieves the peak value gpeak, returned as a nonnegative
real scalar value or an array of nonnegative real values. The frequency is expressed in
units of rad/TimeUnit, relative to the TimeUnit property of sys.

• If sys is a single model, then fpeak is a scalar.
• If sys is a model array, then fpeak is an array of the same size as sys, where

fpeak(k) is the peak gain frequency of the kth model in the array.

More About

Algorithms

getPeakGain uses the algorithm of [1]. All eigenvalue computations are performed
using structure-preserving algorithms from the SLICOT library. For more information
about the SLICOT library, see http://slicot.org.
• “Dynamic System Models”

http://slicot.org

 getPeakGain

1-271

References

[1] Bruisma, N.A. and M. Steinbuch, "A Fast Algorithm to Compute the H∞-Norm of a
Transfer Function Matrix," System Control Letters, 14 (1990), pp. 287-293.

See Also
bode | freqresp | getGainCrossover | sigma

1 Functions — Alphabetical List

1-272

getSensitivity
Sensitivity function from generalized model of control system

Syntax

S = getSensitivity(T,location)

S = getSensitivity(T,location,opening)

Description

S = getSensitivity(T,location) returns the sensitivity function at the specified
location for a generalized model of a control system.

S = getSensitivity(T,location,opening) specifies additional loop openings
for the sensitivity function calculation. Use an opening, for example, to calculate the
sensitivity function of an inner loop, with the outer loop open.

If opening and location list the same point, the software opens the loop after measuring
the signal at the point.

Examples

Sensitivity Function at a Location

Compute the sensitivity at the plant input, marked by the analysis point X.

r
-

G(s)C(s) y
+

X

Create a model of the system by specifying and connecting a numeric LTI plant model G,
a tunable controller C, and the AnalysisPoint block X. Use the AnalysisPoint block
to mark the location where you assess the sensitivity (plant input in this example).

 getSensitivity

1-273

G = tf([1],[1 5]);

C = ltiblock.pid('C','p');

C.Kp.Value = 3;

X = AnalysisPoint('X');

T = feedback(G*X*C,1);

T is a genss model that represents the closed-loop response of the control system from r
to y. The model contains the AnalysisPoint block, X, that identifies the analysis point.

Calculate the sensitivity, S, at X.

S = getSensitivity(T,'X');

tf(S)

ans =

 From input "X" to output "X":

 s + 5

 s + 8

Continuous-time transfer function.

Specify Additional Loop Opening for Sensitivity Function Calculation

Calculate the inner-loop sensitivity at the output of G2, with the outer loop open.

r
-

G2 y
+

-

C1

+

G1C2

X2

X1

Create a model of the system by specifying and connecting the numeric plant models,
tunable controllers, and AnalysisPoint blocks. G1 and G2 are plant models, C1 and C2
are tunable controllers, and X1 and X2 are AnalysisPoint blocks that mark potential
loop-opening locations.

G1 = tf(10,[1 10]);

1 Functions — Alphabetical List

1-274

G2 = tf([1 2],[1 0.2 10]);

C1 = ltiblock.pid('C','pi');

C2 = ltiblock.gain('G',1);

X1 = AnalysisPoint('X1');

X2 = AnalysisPoint('X2');

T = feedback(G1*feedback(G2*C2,X2)*C1,X1);

Calculate the sensitivity, S, at X2, with the outer loop open at X1.

S = getSensitivity(T,'X2','X1');

tf(S)

ans =

 From input "X2" to output "X2":

 s^2 + 0.2 s + 10

 s^2 + 1.2 s + 12

Continuous-time transfer function.

Input Arguments

T — Model of control system
generalized state-space model

Model of a control system, specified as a Generalized State-Space Model (genss).

Locations at which you can perform sensitivity analysis or open loops are marked by
AnalysisPoint blocks in T. Use getPoints(T) to get the list of such locations.

location — Location
string | cell array of strings

Location at which you calculate the sensitivity function, specified as a string or cell array
of strings. To extract the sensitivity function at multiple locations, use a cell array of
strings.

Each string in location must match an analysis point in T. Analysis points are marked
using AnalysisPoint blocks. Use getPoints(T) to get the list of available analysis
points in T.
Example: 'u' or {'u','y'}

 getSensitivity

1-275

opening — Additional loop opening
string | cell array of strings

Additional loop opening used to calculate the sensitivity function, specified as a string or
cell array of strings. To open the loop at multiple locations, use a cell array of strings.

Each string in opening must match an analysis point in T. Analysis points are marked
using AnalysisPoint blocks. Use getPoints(T) to get the list of available analysis
points in T.

Use an opening, for example, to calculate the sensitivity function of an inner loop, with
the outer loop open.

If opening and location list the same point, the software opens the loop after measuring
the signal at the point.
Example: 'y_outer' or {'y_outer','y_outer2'}

Output Arguments

S — Sensitivity function
generalized state-space model

Sensitivity function of the control system, T, measured at location, returned as a
Generalized State-Space Model (genss).

• If location specifies a single analysis point, then S is a SISO genss model.
• If location is a string specifying a vector signal, or a cell array identifying multiple

analysis points, then S is a MIMO genss model.

More About

Sensitivity Function

The sensitivity function, also referred to simply as sensitivity, measures how sensitive a
signal is to an added disturbance. Feedback reduces the sensitivity in the frequency band
where the open-loop gain is greater than 1.

Consider the following model:

1 Functions — Alphabetical List

1-276

+

-
K G

e u yr

The sensitivity, Su, at u is defined as the transfer function from du to u:

+

-
K G

er

+

du

+

u

u du KGu

I KG u du

u I KG du

S
u

= -

Æ + =

Æ = +
-

()

() .
1

1 24 34

Here, I is an identity matrix of the same size as KG.

Sensitivity at multiple locations, for example, u and y, is defined as the MIMO transfer
function from the disturbances to sensitivity measurements:

+

-
K G

er

+

du

+

u

+

dy

+

y

S
S S

S S

du u dy u

du y dy y

=
È

Î
Í
Í

˘

˚
˙
˙

Æ Æ

Æ Æ

.

 getSensitivity

1-277

See Also
| AnalysisPoint | genss | getCompSensitivity | getIOTransfer |
getLoopTransfer | getPoints | getSensitivity | getValue | systune

1 Functions — Alphabetical List

1-278

getPoints
Get list of analysis points in generalized model of control system

Syntax

points = getPoints(T)

Description

points = getPoints(T) returns the names of all analysis-point locations in a
generalized state-space model of a control system. Use this function to query the list of
available analysis points in the model for control system analysis or tuning. You can
refer to the analysis-point locations by name to create design goals control system tuning
or to compute open-loop and closed-loop responses using analysis commands such as
getLoopTransfer and getIOTransfer.

Examples

Analysis-Point Locations in Control System Model

Build a closed-loop model of a cascaded feedback loop system, and get a list of analysis
point locations in the model.

Create a model of the following cascaded feedback loop. C1 and C2 are tunable controllers.
AP1 and AP2 are points of interest for analysis, which you mark with AnalysisPoint
blocks.

 getPoints

1-279

G1 = tf(10,[1 10]);

G2 = tf([1 2],[1 0.2 10]);

C1 = ltiblock.pid('C','pi');

C2 = ltiblock.gain('G',1);

AP1 = AnalysisPoint('AP1');

AP2 = AnalysisPoint('AP2');

T = feedback(G1*feedback(G2*C2,AP2)*C1,AP1);

T is a genss model whose Control Design Blocks include the tunable controllers and the
switches AP1 and AP2.

Get a list of the loop-opening sites in T.

points = getPoints(T)

points =

 'AP1'

 'AP2'

getPoints returns a cell array listing loop-opening sites in the model.

For more complicated closed-loop models, you can use getPoints to keep track of a
larger number of analysis points.

Input Arguments
T — Model of control system
generalized state-space model

Model of a control system, specified as a generalized state-space (genss) model.
Locations in the model at which you can calculate system responses or specify design
goals for tuning are marked by AnalysisPoint blocks in T.

Output Arguments
points — Analysis-points locations
cell array of strings

Analysis-point locations in the control system model, returned as a cell array of strings.
This output is obtained by concatenating the Location properties of all AnalysisPoint
blocks in the control system model.

1 Functions — Alphabetical List

1-280

More About
• “Generalized Models”

See Also
AnalysisPoint | genss | getIOTransfer | getLoopTransfer

 getValue

1-281

getValue
Current value of Generalized Model

Syntax
curval = getValue(M)

curval = getValue(M,blockvalues)

curval = getValue(M,Mref)

Description
curval = getValue(M) returns the current value curval of the “Generalized LTI
model” or “Generalized matrix” M. The current value is obtained by replacing all “Control
Design Blocks” in M by their current value. (For uncertain blocks, the “current value” is
the nominal value of the block.)

curval = getValue(M,blockvalues) uses the block values specified in the
structure blockvalues to compute the current value. The field names and values of
blockvalues specify the block names and corresponding values. Blocks of M not specified
in blockvalues are replaced by their current values.

curval = getValue(M,Mref) inherits block values from the generalized model Mref.
This syntax is equivalent to curval = getValue(M,Mref.Blocks). Use this syntax to
evaluate the current value of M using block values computed elsewhere (for example,
tuned values obtained with Robust Control Toolbox tuning commands such as systune,
looptune, or hinfstruct).

Input Arguments

M

“Generalized LTI model” or “Generalized matrix”.

blockvalues

Structure specifying blocks of M to replace and the values with which to replace those
blocks.

1 Functions — Alphabetical List

1-282

The field names of blockvalues match names of Control Design Blocks of M. Use the field
values to specify the replacement values for the corresponding blocks of M. The field
values can be numeric values, dynamic system models, or static models. If some field
values are Control Design Blocks or Generalized LTI models, the current values of those
models are used to compute curval.

Mref

“Generalized LTI model”. If you provide Mref, getValue computes curval using the
current values of the blocks in Mref whose names match blocks in M.

Output Arguments

curval

Numeric array or “Numeric LTI model” representing the current value of M.

If you do not specify a replacement value for a given Control Design Block of M,
getValue uses the current value of that block.

Examples

Evaluate Model for Specified Values of its Blocks

This example shows how to replace a Control Design Block in a Generalized LTI model
with a specified replacement value using getValue.

Consider the following closed-loop system:

r
-

G(s)C(s) y
+

The following code creates a genss model of this system with G s
s

s

() =
-()

+()

1

1
3

 and a

tunable PI controller C.

 getValue

1-283

G = zpk(1,[-1,-1,-1],1);

C = ltiblock.pid('C','pi');

Try = feedback(G*C,1)

The genss model Try has one Control Design Block, C. The block C is initialized to
default values, and the model Try has a current value that depends on the current value
of C. Use getValue to evaluate C and Try to examine the current values.

1 Evaluate C to obtain its current value.

Cnow = getValue(C)

This command returns a numeric pid object whose coefficients reflect the current
values of the tunable parameters in C.

2 Evaluate Try to obtain its current value.

Tnow = getValue(Try)

This commend returns a numeric model that is equivalent to
feedback(G*Cnow,1).

Access Values of Tuned Models and Blocks

Propagate changes in block values from one model to another using getValue.

This technique is useful for accessing values of models and blocks tuned with Robust
Control Toolbox tuning commands such as systune, looptune, or hinfstruct. For
example, if you have a closed-loop model of your control system T0, with two tunable
blocks, C1 and C2, you can tune it using:

[T,fSoft] = systune(T0,SoftReqs);

You can then access the tuned values of C1 and C2, as well as any closed-loop model H
that depends on C1 and C2, using the following:

C1t = getValue(C1,T);

C2t = getValue(C2,T);

Ht = getValue(H,T);

See Also
genss | replaceBlock | systune | looptune | hinfstruct

1 Functions — Alphabetical List

1-284

gram
Controllability and observability gramians

Syntax

Wc = gram(sys,'c')

Wc = gram(sys,'o')

Description

Wc = gram(sys,'c') calculates the controllability gramian of the state-space (ss)
model sys.

Wc = gram(sys,'o') calculates the observability gramian of the ss model sys.

You can use gramians to study the controllability and observability properties of state-
space models and for model reduction [1] . They have better numerical properties than
the controllability and observability matrices formed by ctrb and obsv.

Given the continuous-time state-space model

&x Ax Bu

y Cx Du

= +
= +

the controllability gramian is defined by

W e BB e dc
A T A

T

=
•

Ú t t t
0

The controllability gramian is positive definite if and only if (A, B) is controllable.

The observability gramian is defined by

W e C Ce do
A T A

T

=
•

Ú t t t
0

 gram

1-285

The observability gramian is positive definite if and only if (C, B) is observable.

The discrete-time counterparts of the controllability and observability gramians are

W A BB A W A C CAc
k T T k

k

o
T k T k

k

= =
=

∞

=

∞

∑ ∑() , ()

0 0

respectively.

Limitations

The A matrix must be stable (all eigenvalues have negative real part in continuous time,
and magnitude strictly less than one in discrete time).

More About

Algorithms

The controllability gramian Wc is obtained by solving the continuous-time Lyapunov
equation

AW W A BBc c
T T+ + = 0

or its discrete-time counterpart

AW A W BBc
T

c
T− + = 0

Similarly, the observability gramian Wo solves the Lyapunov equation

A W W A C C
T

o o
T+ + = 0

in continuous time, and the Lyapunov equation

A W A W C C
T

o o
T− + = 0

1 Functions — Alphabetical List

1-286

in discrete time.

References

[1] Kailath, T., Linear Systems, Prentice-Hall, 1980.

See Also
balreal | ctrb | lyap | dlyap | obsv

 hasdelay

1-287

hasdelay
True for linear model with time delays

Syntax

B = hasdelay(sys)

B = hasdelay(sys,'elem')

Description

B = hasdelay(sys) returns 1 (true) if the model sys has input delays, output delays,
I/O delays, or internal delays, and 0 (false) otherwise. If sys is a model array, then B is
true if least one model in sys has delays.

B = hasdelay(sys,'elem') returns a logical array of the same size as the model
array sys. The logical array indicates which models in sys have delays.

See Also
totaldelay | absorbDelay

1 Functions — Alphabetical List

1-288

hasInternalDelay
Determine if model has internal delays

Syntax

B = hasInternalDelay(sys)

B = hasInternalDelay(sys,'elem')

Description

B = hasInternalDelay(sys) returns 1 (true) if the model sys has internal delays,
and 0 (false) otherwise. If sys is a model array, then B is true if least one model in sys has
delays.

B = hasInternalDelay(sys,'elem') checks each model in the model array sys and
returns a logical array of the same size as sys. The logical array indicates which models
in sys have internal delays.

Examples

Check model for internal delays

Build a dynamic system model of the following closed-loop system and check the model
for internal delays.

s = tf('s');

G = exp(-2.4*s)/(s-5);

C = pid(5,0.1);

sys = feedback(G*C,1);

B = hasInternalDelay(sys)

B =

 hasInternalDelay

1-289

 1

The model sys has an internal delay because of the transfer delay in the plant G.
Therefore, hasInternalDelay returns 1.

Input Arguments

sys — Model or array to check
dynamic system model | model array

Model or array to check for internal delays, specified as a dynamic system model or array
of dynamic system models.

Output Arguments

B — Flag indicating presence of internal delays
logical | logical array

Flag indicating presence of internal delays in input model or array, returned as a logical
value or logical array.

See Also
getDelayModel | hasdelay

1 Functions — Alphabetical List

1-290

hsvd

Hankel singular values of dynamic system

Syntax

hsv = hsvd(sys)

hsv = hsvd(sys,'AbsTol',ATOL,'RelTol',RTOL,'Offset',ALPHA)

hsv = hsvd(sys, opts)

hsvd(sys)

[hsv,baldata] = hsvd(sys)

Description

hsv = hsvd(sys) computes the Hankel singular values hsv of the “dynamic system”
sys. In state coordinates that equalize the input-to-state and state-to-output energy
transfers, the Hankel singular values measure the contribution of each state to the input/
output behavior. Hankel singular values are to model order what singular values are
to matrix rank. In particular, small Hankel singular values signal states that can be
discarded to simplify the model (see balred).

For models with unstable poles, hsvd only computes the Hankel singular values of the
stable part and entries of hsv corresponding to unstable modes are set to Inf.

hsv = hsvd(sys,'AbsTol',ATOL,'RelTol',RTOL,'Offset',ALPHA) specifies
additional options for the stable/unstable decomposition. See the stabsep reference page
for more information about these options. The default values are ATOL = 0, RTOL =
1e-8, and ALPHA = 1e-8.

hsv = hsvd(sys, opts) computes the Hankel singular values using the options
specified in the hsvdOptions object opts.

hsvd(sys) displays a Hankel singular values plot.

[hsv,baldata] = hsvd(sys) returns additional data to speed up model order
reduction with balred. For example

 hsvd

1-291

sys = rss(20); % 20-th order model

[hsv,baldata] = hsvd(sys);

rsys = balred(sys,8:10,'Balancing',baldata);

bode(sys,'b',rsys,'r--')

computes three approximations of sys of orders 8, 9, 10.

There is more than one hsvd available. Type

help lti/hsvd

for more information.

Examples

Compute Hankel Singular Values

This example illustrates how to compute Hankel singular values.

First, create a system with a stable pole very near to 0, then calculate the Hankel
singular values.

sys = zpk([1 2],[-1 -2 -3 -10 -1e-7],1)

hsvd(sys)

Zero/pole/gain:

 (s-1) (s-2)

(s+1) (s+2) (s+3) (s+10) (s+1e-007)

1 Functions — Alphabetical List

1-292

For a better view of the Hankel singular values, switch the plot to log scale by selecting Y
Scale > Log from the right-click menu.

 hsvd

1-293

Notice the dominant Hankel singular value with 1e5 magnitude, due to the mode
s=-1e-7 near the imaginary axis. Set the offset=1e-6 to treat this mode as unstable

hsvd(sys,'Offset',1e-7)

1 Functions — Alphabetical List

1-294

The dominant Hankel singular value is now shown as unstable.

More About
Tips

You can change the properties of your plot, for example the units. For information on the
ways to change properties of your plots, see “Ways to Customize Plots”.

Algorithms

The AbsTol, RelTol, and ALPHA parameters are only used for models with unstable
or marginally stable dynamics. Because Hankel singular values are only meaningful
for stable dynamics, hsvd must first split such models into the sum of their stable and
unstable parts:

 G = G_s + G_ns

This decomposition can be tricky when the model has modes close to the stability
boundary (e.g., a pole at s=-1e-10), or clusters of modes on the stability boundary (e.g.,

 hsvd

1-295

double or triple integrators). While hsvd is able to overcome these difficulties in most
cases, it sometimes produces unexpected results such as

1 Large Hankel singular values for the stable part.

This happens when the stable part G_s contains some poles very close to the stability
boundary. To force such modes into the unstable group, increase the 'Offset'
option to slightly grow the unstable region.

2 Too many modes are labeled "unstable." For example, you see 5 red bars in the HSV
plot when your model had only 2 unstable poles.

The stable/unstable decomposition algorithm has built-in accuracy checks that reject
decompositions causing a significant loss of accuracy in the frequency response. Such
loss of accuracy arises, e.g., when trying to split a cluster of stable and unstable
modes near s=0. Because such clusters are numerically equivalent to a multiple pole
at s=0, it is actually desirable to treat the whole cluster as unstable. In some cases,
however, large relative errors in low-gain frequency bands can trip the accuracy
checks and lead to a rejection of valid decompositions. Additional modes are then
absorbed into the unstable part G_ns, unduly increasing its order.

Such issues can be easily corrected by adjusting the AbsTol and RelTol tolerances.
By setting AbsTol to a fraction of smallest gain of interest in your model, you tell
the algorithm to ignore errors below a certain gain threshold. By increasing RelTol,
you tell the algorithm to sacrifice some relative model accuracy in exchange for
keeping more modes in the stable part G_s.

See Also
hsvdOptions | balred | balreal

1 Functions — Alphabetical List

1-296

hsvdOptions
Create option set for computing Hankel singular values and input/output balancing

Syntax

opts = hsvdOptions

opts = hsvdOptions('OptionName', OptionValue)

Description

opts = hsvdOptions returns the default options for the hsvd and balreal
commands.

opts = hsvdOptions('OptionName', OptionValue) accepts one or more comma-
separated name/value pairs. Specify OptionName inside single quotes.

Input Arguments

Name-Value Pair Arguments

'AbsTol, RelTol'

Absolute and relative error tolerance for stable/unstable decomposition. Positive scalar
values. For an input model G with unstable poles, hsvd and balreal first extract
the stable dynamics by computing the stable/unstable decomposition G → GS + GU.
The AbsTol and RelTol tolerances control the accuracy of this decomposition by
ensuring that the frequency responses of G and GS + GU differ by no more than
AbsTol + RelTol*abs(G). Increasing these tolerances helps separate nearby stable and
unstable modes at the expense of accuracy. See stabsep for more information.

Default: AbsTol = 0; RelTol = 1e-8

'Offset'

Offset for the stable/unstable boundary. Positive scalar value. In the stable/unstable
decomposition, the stable term includes only poles satisfying:

 hsvdOptions

1-297

• Re(s) < -Offset * max(1,|Im(s)|) (Continuous time)
• |z| < 1 - Offset (Discrete time)

Increase the value of Offset to treat poles close to the stability boundary as unstable.

Default: 1e-8

For additional information on the options and how to use them, see the hsvd and
balreal reference pages.

Examples

Compute the Hankel singular values of the system given by:

sys
s

s s

=
+()

+() +()-

0 5

10 2
6

.

Use the Offset option to force hsvd to exclude the pole at s = 10–6 from the stable term
of the stable/unstable decomposition.

sys = zpk(-.5,[-1e-6 -2],1);

opts = hsvdOptions('Offset',.001); % create option set

hsvd(sys,opts) % treats -1e-6 as unstable

See Also
hsvd | balreal

1 Functions — Alphabetical List

1-298

hsvoptions

Create list of Hankel singular value plot options

Syntax

P = hsvoptions

P = HSVOPTIONS('cstpref')

Description

P = hsvoptions returns a list of available options for Hankel singular value (HSV)
plots with default values set. You can use these options to customize the Hankel singular
value plot appearance using the command line.

P = HSVOPTIONS('cstpref') initializes the plot options you selected in the Control
System Toolbox Preferences Editor dialog box. For more information about the editor, see
“Toolbox Preferences Editor” in the User's Guide documentation.

This table summarizes the Hankel singular value plot options.

Option Description

Title, XLabel, YLabel Label text and style
TickLabel Tick label style
Grid [off|on] Show or hide the grid
XlimMode, YlimMode Limit modes
Xlim, Ylim Axes limits
YScale [linear|log] Scale for Y-axis
AbsTol, RelTol, Offset Parameters for the Hankel singular

value computation (used only for models
with unstable dynamics). See hsvd and
stabsep for details.

 hsvoptions

1-299

Examples

Set Scale for Y-Axis in HSV Plot

Create an options set, and set the Yscale property.

P = hsvoptions;

P.YScale = 'linear';

Use the options set to generate an HSV plot. Note the linear y-axis scale in the plot.

h = hsvplot(rss(2,2,3),P);

1 Functions — Alphabetical List

1-300

See Also
hsvd | hsvplot | getoptions | setoptions | stabsep

 hsvplot

1-301

hsvplot
Plot Hankel singular values and return plot handle

Syntax

h = hsvplot(sys)

hsvplot(sys)

hsvplot(sys, AbsTol',ATOL,'RelTol',RTOL,'Offset',ALPHA)

hsvplot(AX,sys,...)

Description

h = hsvplot(sys) plots the Hankel singular values of an LTI system sys and returns
the plot handle h. You can use this handle to customize the plot with the getoptions
and setoptions commands. Type

help hsvoptions

for a list of available plot options.

hsvplot(sys) plots the Hankel singular values of the LTI model sys. See hsvd for
details on the meaning and purpose of Hankel singular values. The Hankel singular
values for the stable and unstable modes of sys are shown in blue and red, respectively.

hsvplot(sys, AbsTol',ATOL,'RelTol',RTOL,'Offset',ALPHA) specifies
additional options for computing the Hankel singular values.

hsvplot(AX,sys,...) attaches the plot to the axes with handle AX.

Examples

Use the plot handle to change plot options in the Hankel singular values plot.

sys = rss(20);

h = hsvplot(sys,'AbsTol',1e-6);

% Switch to log scale and modify Offset parameter

1 Functions — Alphabetical List

1-302

setoptions(h,'Yscale','log','Offset',0.3)

More About

Tips

You can change the properties of your plot, for example the units. For information on the
ways to change properties of your plots, see “Ways to Customize Plots”.

See Also
getoptions | hsvd | hsvoptions | setoptions

 imp2exp

1-303

imp2exp
Convert implicit linear relationship to explicit input-output relation

Syntax
B = imp2exp(A,yidx,uidx)

Description

B = imp2exp(A,yidx,uidx) transforms a linear constraint between variables Y and U
of the form A(:,[yidx;uidx])*[Y;U] = 0 into an explicit input/output relationship Y
= B*U. The vectors yidx and uidx refer to the columns (inputs) of A as referenced by the
explicit relationship for B.

The constraint matrix A can be a double, ss, tf, zpk and frd object as well as an
uncertain object, including umat, uss and ufrd. The result B will be of the same class.

Examples

Scalar Algebraic Constraint

Consider the constraint 4y + 7u = 0. Solving for y gives y = 1.75u. You form the
equation using imp2exp:

A = [4 7];

Yidx = 1;

Uidx = 2;

and then

B = imp2exp(A,Yidx,Uidx)

B =

 -1.7500

yields B equal to -1.75.

1 Functions — Alphabetical List

1-304

Matrix Algebraic Constraint

Consider two motor/generator constraints among 4 variables [V;I;T;W], namely [1 -1
0 -2e-3;0 -2e-3 1 0]*[V;I;T;W] = 0. You can find the 2-by-2 matrix B so that
[V;T] = B*[W;I] using imp2exp.

A = [1 -1 0 -2e-3;0 -2e-3 1 0];

Yidx = [1 3];

Uidx = [4 2];

B = imp2exp(A,Yidx,Uidx)

B =

 0.0020 1.0000

 0 0.0020

You can find the 2-by-2 matrix C so that [I;W] = C*[T;V]

Yidx = [2 4];

Uidx = [3 1];

C = imp2exp(A,Yidx,Uidx)

C =

 500 0

 -250000 500

Uncertain Matrix Algebraic Constraint

Consider two uncertain motor/generator constraints among 4 variables [V;I;T;W],
namely [1 -R 0 -K;0 -K 1 0]*[V;I;T;W] = 0. You can find the uncertain 2-by-2
matrix B so that [V;T] = B*[W;I].

R = ureal('R',1,'Percentage',[-10 40]);

K = ureal('K',2e-3,'Percentage',[-30 30]);

A = [1 -R 0 -K;0 -K 1 0];

Yidx = [1 3];

Uidx = [4 2];

B = imp2exp(A,Yidx,Uidx)

UMAT: 2 Rows, 2 Columns

 K: real, nominal = 0.002, variability = [-30 30]%, 2 occurrences

 R: real, nominal = 1, variability = [-10 40]%, 1 occurrence

Scalar Dynamic System Constraint

Consider a standard single-loop feedback connection of controller C and an uncertain
plant P, described by the equations e = r-y; u = Ce; f = d+u; y = Pf.

 imp2exp

1-305

P = tf([1],[1 0]);

C = tf([2*.707*1 1^2],[1 0]);

A = [1 -1 0 0 0 -1;0 -C 1 0 0 0;0 0 -1 -1 1 0;0 0 0 0 -P 1];

OutputIndex = [6;3;2;5]; % [y;u;e;f]

InputIndex = [1;4]; % [r;d]

Sys = imp2exp(A,OutputIndex,InputIndex);

Sys.InputName = {'r';'d'};

Sys.OutputName = {'y';'u';'e';'f'};

pole(Sys)

ans =

 -0.7070 + 0.7072i

 -0.7070 - 0.7072i

 -0.7070 + 0.7072i

 -0.7070 - 0.7072i

stepplot(Sys)

1 Functions — Alphabetical List

1-306

More About

Algorithms

The number of rows of A must equal the length of yidx.

See Also
iconnect | inv

 impulse

1-307

impulse

Impulse response plot of dynamic system; impulse response data

Syntax

impulse(sys)

impulse(sys,Tfinal)

impulse(sys,t)

impulse(sys1,sys2,...,sysN)

impulse(sys1,sys2,...,sysN,Tfinal)

impulse(sys1,sys2,...,sysN,t)

[y,t] = impulse(sys)

[y,t] = impulse(sys,Tfinal)

y = impulse(sys,t)

[y,t,x] = impulse(sys)

[y,t,x,ysd] = impulse(sys)

Description

impulse calculates the unit impulse response of a “dynamic system model”. For
continuous-time dynamic systems, the impulse response is the response to a Dirac input
δ(t). For discrete-time systems, the impulse response is the response to a unit area pulse
of length Ts and height 1/Ts, where Ts is the sampling time of the system. (This pulse
approaches δ(t) as Ts approaches zero.) For state-space models, impulse assumes initial
state values are zero.

impulse(sys) plots the impulse response of the dynamic system model sys. This model
can be continuous or discrete, and SISO or MIMO. The impulse response of multi-input
systems is the collection of impulse responses for each input channel. The duration of
simulation is determined automatically to display the transient behavior of the response.

impulse(sys,Tfinal) simulates the impulse response from t = 0 to the final time t
= Tfinal. Express Tfinal in the system time units, specified in the TimeUnit property
of sys. For discrete-time systems with unspecified sampling time (Ts = -1), impulse
interprets Tfinal as the number of sampling periods to simulate.

1 Functions — Alphabetical List

1-308

impulse(sys,t) uses the user-supplied time vector t for simulation. Express t in
the system time units, specified in the TimeUnit property of sys. For discrete-time
models, t should be of the form Ti:Ts:Tf, where Ts is the sample time. For continuous-
time models, t should be of the form Ti:dt:Tf, where dt becomes the sample time of a
discrete approximation to the continuous system (see “Algorithms” on page 1-312). The
impulse command always applies the impulse at t=0, regardless of Ti.

To plot the impulse responses of several models sys1,..., sysN on a single figure, use:

impulse(sys1,sys2,...,sysN)

impulse(sys1,sys2,...,sysN,Tfinal)

impulse(sys1,sys2,...,sysN,t)

As with bode or plot, you can specify a particular color, linestyle, and/or marker for
each system, for example,

impulse(sys1,'y:',sys2,'g--')

See "Plotting and Comparing Multiple Systems" and the bode entry in this section for
more details.

When invoked with output arguments:

[y,t] = impulse(sys)

[y,t] = impulse(sys,Tfinal)

y = impulse(sys,t)

impulse returns the output response y and the time vector t used for simulation (if not
supplied as an argument to impulse). No plot is drawn on the screen. For single-input
systems, y has as many rows as time samples (length of t), and as many columns as
outputs. In the multi-input case, the impulse responses of each input channel are stacked
up along the third dimension of y. The dimensions of y are then

For state-space models only:

[y,t,x] = impulse(sys)

(length of t) × (number of outputs) × (number of inputs)

 impulse

1-309

and y(:,:,j) gives the response to an impulse disturbance entering the jth input
channel. Similarly, the dimensions of x are
(length of t) × (number of states) × (number of inputs)

[y,t,x,ysd] = impulse(sys) returns the standard deviation YSD of the response Y
of an identified system SYS. YSD is empty if SYS does not contain parameter covariance
information.

Examples

Impulse Response Plot of Second-Order State-Space Model

Plot the impulse response of the second-order state-space model

&

&

x

x

x

x

1

2

1

2

0 5572 0 7814

0 7814 0

1 1

0 2

 =

− −

 +

−

. .

.

= []

u

u

y
x

x

1

2

1

2

1 9691 6 4493. .

a = [-0.5572 -0.7814;0.7814 0];

b = [1 -1;0 2];

c = [1.9691 6.4493];

sys = ss(a,b,c,0);

impulse(sys)

1 Functions — Alphabetical List

1-310

The left plot shows the impulse response of the first input channel, and the right plot
shows the impulse response of the second input channel.

You can store the impulse response data in MATLAB arrays by

[y,t] = impulse(sys);

Because this system has two inputs, y is a 3-D array with dimensions

size(y)

ans =

 139 1 2

 impulse

1-311

(the first dimension is the length of t). The impulse response of the first input channel is
then accessed by

ch1 = y(:,:,1);

size(ch1)

ans =

 139 1

Impulse Data from Identified System

Fetch the impulse response and the corresponding 1 std uncertainty of an identified
linear system .
load(fullfile(matlabroot, 'toolbox', 'ident', 'iddemos', 'data', 'dcmotordata'));

z = iddata(y, u, 0.1, 'Name', 'DC-motor');

set(z, 'InputName', 'Voltage', 'InputUnit', 'V');

set(z, 'OutputName', {'Angular position', 'Angular velocity'});

set(z, 'OutputUnit', {'rad', 'rad/s'});

set(z, 'Tstart', 0, 'TimeUnit', 's');

model = tfest(z,2);

[y,t,~,ysd] = impulse(model,2);

% Plot 3 std uncertainty

subplot(211)

plot(t,y(:,1), t,y(:,1)+3*ysd(:,1),'k:', t,y(:,1)-3*ysd(:,1),'k:')

subplot(212)

plot(t,y(:,2), t,y(:,2)+3*ysd(:,2),'k:', t,y(:,2)-3*ysd(:,2),'k:')

Limitations
The impulse response of a continuous system with nonzero D matrix is infinite at t = 0.
impulse ignores this discontinuity and returns the lower continuity value Cb at t = 0.

More About

Tips

You can change the properties of your plot, for example the units. For information on the
ways to change properties of your plots, see “Ways to Customize Plots”.

1 Functions — Alphabetical List

1-312

Algorithms

Continuous-time models are first converted to state space. The impulse response of a
single-input state-space model

&x Ax bu

y Cx

= +
=

is equivalent to the following unforced response with initial state b.

&x Ax x b

y Cx

= =
=

, ()0

To simulate this response, the system is discretized using zero-order hold on the inputs.
The sampling period is chosen automatically based on the system dynamics, except when
a time vector t = 0:dt:Tf is supplied (dt is then used as sampling period).

See Also
ltiview | initial | step | lsim

 impulseplot

1-313

impulseplot
Plot impulse response and return plot handle

Syntax
impulseplot(sys)

impulseplot(sys,Tfinal)

impulseplot(sys,t)

impulseplot(sys1,sys2,...,sysN)

impulseplot(sys1,sys2,...,sysN,Tfinal)

impulseplot(sys1,sys2,...,sysN,t)

impulseplot(AX,...)

impulseplot(..., plotoptions)

h = impulseplot(...)

Description
impulseplot plots the impulse response of the “dynamic system model” sys. For multi-
input models, independent impulse commands are applied to each input channel. The
time range and number of points are chosen automatically. For continuous systems with
direct feedthrough, the infinite pulse at t=0 is disregarded. impulseplot can also return
the plot handle, h. You can use this handle to customize the plot with the getoptions
and setoptions commands. Type

help timeoptions

for a list of available plot options.

impulseplot(sys) plots the impulse response of the LTI model without returning the
plot handle.

impulseplot(sys,Tfinal) simulates the impulse response from t = 0 to the final
time t = Tfinal. Express Tfinal in the system time units, specified in the TimeUnit
property of sys. For discrete-time systems with unspecified sampling time (Ts = -1),
impulseplot interprets Tfinal as the number of sampling intervals to simulate.

impulseplot(sys,t) uses the user-supplied time vector t for simulation. Express t
in the system time units, specified in the TimeUnit property of sys. For discrete-time

1 Functions — Alphabetical List

1-314

models, t should be of the form Ti:Ts:Tf, where Ts is the sample time. For continuous-
time models, t should be of the form Ti:dt:Tf, where dt becomes the sample time of
a discrete approximation to the continuous system (see impulse). The impulseplot
command always applies the impulse at t=0, regardless of Ti.

To plot the impulse response of multiple LTI models sys1,sys2,... on a single plot, use:

impulseplot(sys1,sys2,...,sysN)

impulseplot(sys1,sys2,...,sysN,Tfinal)

impulseplot(sys1,sys2,...,sysN,t)

You can also specify a color, line style, and marker for each system, as in

impulseplot(sys1,'r',sys2,'y--',sys3,'gx')

impulseplot(AX,...) plots into the axes with handle AX.

impulseplot(..., plotoptions) plots the impulse response with the options
specified in plotoptions. Type

help timeoptions

for more detail.

h = impulseplot(...) plots the impulse response and returns the plot handle h.

Examples

Example 1

Normalize the impulse response of a third-order system.

sys = rss(3);

h = impulseplot(sys);

% Normalize responses

setoptions(h,'Normalize','on');

Example 2

Plot the impulse response and the corresponding 1 std "zero interval" of an identified
linear system.

 impulseplot

1-315

load(fullfile(matlabroot, 'toolbox', 'ident', 'iddemos', 'data', 'dcmotordata'));

z = iddata(y, u, 0.1, 'Name', 'DC-motor');

set(z, 'InputName', 'Voltage', 'InputUnit', 'V');

set(z, 'OutputName', {'Angular position', 'Angular velocity'});

set(z, 'OutputUnit', {'rad', 'rad/s'});

set(z, 'Tstart', 0, 'TimeUnit', 's');

model = n4sid(z,4,n4sidOptions('Focus', 'simulation'));

h = impulseplot(model,2);

showConfidence(h);

More About

Tips

You can change the properties of your plot, for example the units. For information on the
ways to change properties of your plots, see “Ways to Customize Plots”.

See Also
impulse | setoptions | getoptions

1 Functions — Alphabetical List

1-316

initial
Initial condition response of state-space model

Syntax

initial(sys,x0)

initial(sys,x0,Tfinal)

initial(sys,x0,t)

initial(sys1,sys2,...,sysN,x0)

initial(sys1,sys2,...,sysN,x0,Tfinal)

initial(sys1,sys2,...,sysN,x0,t)

[y,t,x] = initial(sys,x0)

[y,t,x] = initial(sys,x0,Tfinal)

[y,t,x] = initial(sys,x0,t)

Description

initial(sys,x0) calculates the unforced response of a state-space (ss) model sys with
an initial condition on the states specified by the vector x0:

&x Ax x x

y Cx

= =
=

, ()0 0

This function is applicable to either continuous- or discrete-time models. When invoked
without output arguments, initial plots the initial condition response on the screen.

initial(sys,x0,Tfinal) simulates the response from t = 0 to the final time t =
Tfinal. Express Tfinal in the system time units, specified in the TimeUnit property
of sys. For discrete-time systems with unspecified sampling time (Ts = -1), initial
interprets Tfinal as the number of sampling periods to simulate.

initial(sys,x0,t) uses the user-supplied time vector t for simulation. Express t
in the system time units, specified in the TimeUnit property of sys. For discrete-time
models, t should be of the form 0:Ts:Tf, where Ts is the sample time. For continuous-
time models, t should be of the form 0:dt:Tf, where dt becomes the sample time of a
discrete approximation to the continuous system (see impulse).

 initial

1-317

To plot the initial condition responses of several LTI models on a single figure, use

initial(sys1,sys2,...,sysN,x0)

initial(sys1,sys2,...,sysN,x0,Tfinal)

initial(sys1,sys2,...,sysN,x0,t)

(see impulse for details).

When invoked with output arguments,

[y,t,x] = initial(sys,x0)

[y,t,x] = initial(sys,x0,Tfinal)

[y,t,x] = initial(sys,x0,t)

return the output response y, the time vector t used for simulation, and the state
trajectories x. No plot is drawn on the screen. The array y has as many rows as time
samples (length of t) and as many columns as outputs. Similarly, x has length(t) rows
and as many columns as states.

Examples

Response of State-Space Model to Initial Condition

Plot the response of the following state-space model:

Take the following initial condition:

a = [-0.5572, -0.7814; 0.7814, 0];

1 Functions — Alphabetical List

1-318

c = [1.9691 6.4493];

x0 = [1 ; 0];

sys = ss(a,[],c,[]);

initial(sys,x0)

More About

Tips

You can change the properties of your plot, for example the units. For information on the
ways to change properties of your plots, see “Ways to Customize Plots”.

 initial

1-319

See Also
impulse | step | lsim | ltiview

1 Functions — Alphabetical List

1-320

initialplot
Plot initial condition response and return plot handle

Syntax

initialplot(sys,x0)

initialplot(sys,x0,Tfinal)

initialplot(sys,x0,t)

initialplot(sys1,sys2,...,sysN,x0)

initialplot(sys1,sys2,...,sysN,x0,Tfinal)

initialplot(sys1,sys2,...,sysN,x0,t)

initialplot(AX,...)

initialplot(..., plotoptions)

h = initialplot(...)

Description

initialplot(sys,x0) plots the undriven response of the state-space (ss) model sys
with initial condition x0 on the states. This response is characterized by these equations:

Continuous time: x = A x, y = C x, x(0) = x0

Discrete time: x[k+1] = A x[k], y[k] = C x[k], x[0] = x0

The time range and number of points are chosen automatically. initialplot also
returns the plot handle h. You can use this handle to customize the plot with the
getoptions and setoptions commands. Type

help timeoptions

for a list of available plot options.

initialplot(sys,x0,Tfinal) simulates the response from t = 0 to the final time
t = Tfinal. Express Tfinal in the system time units, specified in the TimeUnit
property of sys. For discrete-time systems with unspecified sampling time (Ts = -1),
initialplot interprets Tfinal as the number of sampling periods to simulate.

 initialplot

1-321

initialplot(sys,x0,t) uses the user-supplied time vector t for simulation. Express
t in the system time units, specified in the TimeUnit property of sys. For discrete-time
models, t should be of the form 0:Ts:Tf, where Ts is the sample time. For continuous-
time models, t should be of the form 0:dt:Tf, where dt becomes the sample time of a
discrete approximation to the continuous system (see impulse).

To plot the initial condition responses of several LTI models on a single figure, use

initialplot(sys1,sys2,...,sysN,x0)

initialplot(sys1,sys2,...,sysN,x0,Tfinal)

initialplot(sys1,sys2,...,sysN,x0,t)

You can also specify a color, line style, and marker for each system, as in

initialplot(sys1,'r',sys2,'y--',sys3,'gx',x0).

initialplot(AX,...) plots into the axes with handle AX.

initialplot(..., plotoptions) plots the initial condition response with the
options specified in plotoptions. Type

help timeoptions

for more detail.

h = initialplot(...) plots the system response and returns the plot handle h.

Examples

Plot a third-order system's response to initial conditions and use the plot handle to
change the plot's title.

sys = rss(3);

h = initialplot(sys,[1,1,1])

p = getoptions(h); % Get options for plot.

p.Title.String = 'My Title'; % Change title in options.

setoptions(h,p); % Apply options to the plot.

1 Functions — Alphabetical List

1-322

More About

Tips

You can change the properties of your plot, for example the units. For information on the
ways to change properties of your plots, see “Ways to Customize Plots”.

See Also
getoptions | initial | setoptions

 interp

1-323

interp
Interpolate FRD model

Syntax

isys = interp(sys,freqs)

Description

isys = interp(sys,freqs) interpolates the frequency response data contained in
the FRD model sys at the frequencies freqs. interp, which is an overloaded version
of the MATLAB function interp, uses linear interpolation and returns an FRD model
isys containing the interpolated data at the new frequencies freqs. If sys is an IDFRD
model (requires System Identification Toolbox software), the noise spectrum, if non-
empty, is also interpolated. The response and noise covariance data, if available, are also
interpolated.

You should express the frequency values freqs in the same units as sys.frequency.
The frequency values must lie between the smallest and largest frequency points in sys
(extrapolation is not supported).

See Also
freqresp | frd

1 Functions — Alphabetical List

1-324

inv
Invert models

Syntax

inv

Description

inv inverts the input/output relation

y G s u= ()

to produce the model with the transfer matrix H s G s() ()= −1 .

u H s y= ()

This operation is defined only for square systems (same number of inputs and outputs)
with an invertible feedthrough matrix D. inv handles both continuous- and discrete-time
systems.

Examples

Consider

H s s() = +

1
1

1

0 1

At the MATLAB prompt, type

H = [1 tf(1,[1 1]);0 1]

Hi = inv(H)

 inv

1-325

to invert it. These commands produce the following result.

Transfer function from input 1 to output...

 #1: 1

 #2: 0

Transfer function from input 2 to output...

 -1

 #1: -----

 s + 1

 #2: 1

You can verify that

H * Hi

is the identity transfer function (static gain I).

Limitations

Do not use inv to model feedback connections such as

While it seems reasonable to evaluate the corresponding closed-loop transfer function
()I GH G+ −1 as

inv(1+g*h) * g

this typically leads to nonminimal closed-loop models. For example,

g = zpk([],1,1)

h = tf([2 1],[1 0])

cloop = inv(1+g*h) * g

1 Functions — Alphabetical List

1-326

yields a third-order closed-loop model with an unstable pole-zero cancellation at s = 1.

cloop

Zero/pole/gain:

 s (s-1)

(s-1) (s^2 + s + 1)

Use feedback to avoid such pitfalls.

cloop = feedback(g,h)

Zero/pole/gain:

 s

(s^2 + s + 1)

 iopzmap

1-327

iopzmap

Plot pole-zero map for I/O pairs of model

Syntax

iopzmap(sys)

iopzmap(sys1,sys2,...)

Description

iopzmap(sys) computes and plots the poles and zeros of each input/output pair of the
dynamic system model sys. The poles are plotted as x's and the zeros are plotted as o's.

iopzmap(sys1,sys2,...) shows the poles and zeros of multiple models
sys1,sys2,... on a single plot. You can specify distinctive colors for each model, as in
iopzmap(sys1,'r',sys2,'y',sys3,'g').

The functions sgrid or zgrid can be used to plot lines of constant damping ratio and
natural frequency in the s or z plane.

For model arrays, iopzmap plots the poles and zeros of each model in the array on the
same diagram.

Examples

Pole-Zero Map for MIMO System

Create a one-input, two-output dynamic system.

H = [tf(-5 ,[1 -1]); tf([1 -5 6],[1 1 0])];

Plot a pole-zero map.

iopzmap(H)

1 Functions — Alphabetical List

1-328

iopzmap generates a separate map for each I/O pair in the system.

Pole-Zero Map of Identified Model

View the poles and zeros of an over-parameterized state-space model estimated from
input-output data. (Requires System Identification Toolbox™).

load iddata1

sys = ssest(z1,6,ssestOptions('focus','simulation'));

iopzmap(sys)

 iopzmap

1-329

The plot shows that there are two pole-zero pairs that almost overlap, which hints are
their potential redundancy.

More About

Tips

You can change the properties of your plot, for example the units. For information on the
ways to change properties of your plots, see “Ways to Customize Plots”.

See Also
pole | zero | sgrid | zgrid | iopzplot | pzmap

1 Functions — Alphabetical List

1-330

iopzplot
Plot pole-zero map for I/O pairs and return plot handle

Syntax

h = iopzplot(sys)

iopzplot(sys1,sys2,...)

iopzplot(AX,...)

iopzplot(..., plotoptions)

Description

h = iopzplot(sys) computes and plots the poles and zeros of each input/output pair
of the LTI model SYS. The poles are plotted as x's and the zeros are plotted as o's. It
also returns the plot handle h. You can use this handle to customize the plot with the
getoptions and setoptions commands. Type

help pzoptions

for a list of available plot options.

iopzplot(sys1,sys2,...) shows the poles and zeros of multiple LTI models
SYS1,SYS2,... on a single plot. You can specify distinctive colors for each model, as in

iopzplot(sys1,'r',sys2,'y',sys3,'g')

iopzplot(AX,...) plots into the axes with handle AX.

iopzplot(..., plotoptions) plots the poles and zeros with the options specified in
plotoptions. Type

help pzoptions

for more detail.

The function sgrid or zgrid can be used to plot lines of constant damping ratio and
natural frequency in the s or z plane.

 iopzplot

1-331

For arrays sys of LTI models, iopzplot plots the poles and zeros of each model in the
array on the same diagram.

Examples

Change I/O Grouping on Pole/Zero Map

Create a pole/zero map of a two-input, two-output dynamic system.

sys = rss(3,2,2);

h = iopzplot(sys);

1 Functions — Alphabetical List

1-332

By default, the plot displays the poles and zeros of each I/O pair on its own axis. Use the
plot handle to view all I/Os on a single axis.

setoptions(h,'IOGrouping','all')

Use Pole-Zero Map to Examine Identified Model

View the poles and zeros of a sixth-order state-space model estimated from input-output
data. Use the plot handle to display the confidence intervals of the identified model's pole
and zero locations.

load iddata1

sys = ssest(z1,6,ssestOptions('focus','simulation'));

 iopzplot

1-333

h = iopzplot(sys);

showConfidence(h)

There is at least one pair of complex-conjugate poles whose locations overlap with those
of a complex zero, within the 1-σ confidence region. This suggests their redundancy.
Hence, a lower (4th) order model might be more robust for the given data.

sys2 = ssest(z1,4,ssestOptions('focus','simulation'));

h = iopzplot(sys,sys2);

showConfidence(h)

legend('6th-order','4th-order')

axis([-20, 10 -30 30])

1 Functions — Alphabetical List

1-334

The fourth-order model sys2 shows less variability in the pole-zero locations.

More About

Tips

You can change the properties of your plot, for example the units. For information on the
ways to change properties of your plots, see “Ways to Customize Plots”.

See Also
iopzmap | setoptions | getoptions

 isct

1-335

isct
Determine if dynamic system model is in continuous time

Syntax

bool = isct(sys)

Description

bool = isct(sys) returns a logical value of 1 (true) if the dynamic system model sys
is a continuous-time model. The function returns a logical value of 0 (false) otherwise.

Input Arguments

sys

“Dynamic system model” or array of such models.

Output Arguments

bool

Logical value indicating whether sys is a continuous-time model.

bool = 1 (true) if sys is a continuous-time model (sys.Ts = 0). If sys is a discrete-time
model, bool = 0 (false).

For a static gain, both isct and isdt return true unless you explicitly set the sampling
time to a nonzero value. If you do so, isdt returns true and isct returns false.

For arrays of models, bool is true if the models in the array are continuous.

See Also
isdt | isstable

1 Functions — Alphabetical List

1-336

isdt
Determine if dynamic system model is in discrete time

Syntax

bool = isdt(sys)

Description

bool = isdt(sys) returns a logical value of 1 (true) if the dynamic system model sys
is a discrete-time model. The function returns a logical value of 0 (false) otherwise.

Input Arguments

sys

“Dynamic system model” or array of such models.

Output Arguments

bool

Logical value indicating whether sys is a discrete-time model.

bool = 1 (true) if sys is a discrete-time model (sys.Ts # 0). If sys is a continuous-time
model, bool = 0 (false).

For a static gain, both isct and isdt return true unless you explicitly set the sampling
time to a nonzero value. If you do so, isdt returns true and isct returns false.

For arrays of models, bool is true if the models in the array are discrete.

See Also
isct | isstable

 isempty

1-337

isempty
Determine whether dynamic system model is empty

Syntax

isempty(sys)

Description

isempty(sys) returns TRUE (logical 1) if the dynamic system model sys has no
input or no output, and FALSE (logical 0) otherwise. Where sys is a FRD model,
isempty(sys) returns TRUE when the frequency vector is empty. Where sys is a model
array, isempty(sys) returns TRUE when the array has empty dimensions or when the
LTI models in the array are empty.

Examples

Both commands
isempty(tf) % tf by itself returns an empty transfer function

isempty(ss(1,2,[],[]))

return TRUE (logical 1) while

isempty(ss(1,2,3,4))

returns FALSE (logical 0).

See Also
size | issiso

1 Functions — Alphabetical List

1-338

isfinite
Determine if model has finite coefficients

Syntax

B = isfinite(sys)

B = isfinite(sys,'elem')

Description

B = isfinite(sys) returns 1 (true) if the model sys has finite coefficients, and 0
(false) otherwise. If sys is a model array, then B is true if all models in sys have finite
coefficients.

B = isfinite(sys,'elem') checks each model in the model array sys and returns a
logical array of the same size as sys. The logical array indicates which models in sys have
finite coefficients.

Examples

Check Model for Finite Coefficients

Create model and check whether its coefficients are all finite.

sys = rss(3);

B = isfinite(sys)

B =

 1

Check Each Model in Array

Create a 1-by-5 array of models and check each model for finite coefficients.

sys = rss(2,2,2,1,5);

B = isfinite(sys,'elem')

 isfinite

1-339

B =

 1 1 1 1 1

When you use the 'elem' input, isfinite checks each model individually and returns
a logical array indicating which models have all finite coefficients.

Input Arguments

sys — Model or array to check
input-output model | model array

Model or array to check, specified as an input-output model or model array. Input-output
models include dynamic system models such as numeric LTI models and generalized
models. Input-output models also include static models such as tunable parameters or
generalized matrices.

Output Arguments

B — Flag indicating whether model has finite coefficients
logical | logical array

Flag indicating whether model has finite coefficients, returned as a logical value or
logical array.

See Also
isreal

1 Functions — Alphabetical List

1-340

isParametric
Determine if model has tunable parameters

Syntax

bool = isParametric(M)

Description

bool = isParametric(M) returns a logical value of 1 (true) if the model M contains
parametric (tunable) “Control Design Blocks”. The function returns a logical value of 0
(false) otherwise.

Input Arguments

M

A “Dynamic System model” or “Static model”, or an array of such models.

Output Arguments

bool

Logical value indicating whether M contains tunable parameters.

bool = 1 (true) if the model M contains parametric (tunable) “Control Design Blocks”
such as realp or ltiblock.ss. If M does not contain parametric Control Design Blocks,
bool = 0 (false).

More About
• “Control Design Blocks”
• “Dynamic System Models”

 isParametric

1-341

• “Static Models”

See Also
nblocks

1 Functions — Alphabetical List

1-342

isproper

Determine if dynamic system model is proper

Syntax

B = isproper(sys)

B = isproper(sys,'elem')

[B, sysr] = isproper(sys)

Description

B = isproper(sys) returns TRUE (logical 1) if the dynamic system model sys is proper
and FALSE (logical 0) otherwise.

A proper model has relative degree ≤ 0 and is causal. SISO transfer functions and zero-
pole-gain models are proper if the degree of their numerator is less than or equal to
the degree of their denominator (in other words, if they have at least as many poles
as zeroes). MIMO transfer functions are proper if all their SISO entries are proper.
Regular state-space models (state-space models having no E matrix) are always proper.
A descriptor state-space model that has an invertible E matrix is always proper. A
descriptor state-space model having a singular (non-invertible) E matrix is proper if the
model has at least as many poles as zeroes.

If sys is a model array, then B is TRUE if all models in the array are proper.

B = isproper(sys,'elem') checks each model in a model array sys and returns a
logical array of the same size as sys. The logical array indicates which models in sys are
proper.

If sys is a proper descriptor state-space model with a non-invertible E matrix, [B,
sysr] = isproper(sys) also returns an equivalent model sysr with fewer states
(reduced order) and a non-singular E matrix. If sys is not proper, sysr = sys.

 isproper

1-343

Examples

Examine Whether Models are Proper

The following commands

B1 = isproper(tf([1 0],1)) % transfer function s

B2 = isproper(tf([1 0],[1 1])) % transfer function s/(s+1)

return FALSE (logical 0) and TRUE (logical 1), respectively.

Compute Equivalent Lower-Order Model

Combining state-space models sometimes yields results that include more states than
necessary. Use isproper to compute an equivalent lower-order model.

H1 = ss(tf([1 1],[1 2 5]));

H2 = ss(tf([1 7],[1]));

H = H1*H2;

size(H)

State-space model with 1 outputs, 1 inputs, and 4 states.

H is proper and reducible. isproper returns the reduced model.

[isprop,Hr] = isproper(H);

size(Hr)

State-space model with 1 outputs, 1 inputs, and 2 states.

H and Hr are equivalent, as a Bode plot demonstrates.

bodeplot(H,Hr,'r--')

legend('original','reduced')

1 Functions — Alphabetical List

1-344

See Also
ss | dss

 isreal

1-345

isreal
Determine if model has real-valued coefficients

Syntax

B = isreal(sys)

B = isreal(sys,'elem')

Description

B = isreal(sys) returns 1 (true) if the model sys has real-valued coefficients, and
0 (false) otherwise. If sys is a model array, then B is true if all models in sys have real-
valued coefficients.

B = isreal(sys,'elem') checks each model in the model array sys and returns a
logical array of the same size as sys. The logical array indicates which models in sys have
real coefficients.

Examples

Check Model for Real-Valued Coefficients

Create model and check whether its coefficients are all real-valued.

sys = rss(3);

B = isreal(sys)

B =

 1

Check Each Model in Array

Create a 1-by-5 array of models and check each model for real-valued coefficients.

sys = rss(2,2,2,1,5);

B = isreal(sys,'elem')

1 Functions — Alphabetical List

1-346

B =

 1 1 1 1 1

When you use the 'elem' input, isreal checks each model individually and returns a
logical array indicating which models have all real-valued coefficients.

Input Arguments

sys — Model or array to check
input-output model | model array

Model or array to check, specified as an input-output model or model array. Input-output
models include dynamic system models such as numeric LTI models and generalized
models. Input-output models also include static models such as tunable parameters or
generalized matrices.

Output Arguments

B — Flag indicating whether model has real-valued coefficients
logical | logical array

Flag indicating whether model has real-valued coefficients, returned as a logical value or
logical array.

See Also
isfinite

 isstable

1-347

isstable
Determine whether system is stable

Syntax

B = isstable(sys)

B = isstable(sys,'elem')

Description

B = isstable(sys) returns 1 (true) if the dynamic system model sys has stable
dynamics, and 0 (false) otherwise. If sys is a model array, then B is true only if all
models in sys are stable.

B = isstable(sys,'elem') returns a logical array of the same dimensions as the
model array sys. The logical array indicates which models in sys are stable.

isstable is only supported for analytical models with a finite number of poles.

Examples

Determine Stability of Models in Model Array

Create an array of SISO transfer function models with poles varying from 2 to -2.

a = [-2:2];

sys = tf(zeros(1,1,1,length(a)));

for j = 1:length(a)

 sys(1,1,1,j) = tf(1,[1 a(j)]);

end

Examine the stability of the model array.

B_all = isstable(sys)

B_all =

1 Functions — Alphabetical List

1-348

 0

By default, isstable returns a single Boolean value that is 1 (true) only if all models
in the array are stable. sys contains some models with nonpositive poles, which are not
stable. Therefore, isstable returns 0 (false).

Examine stability of each model in the array, element by element.

B_elem = isstable(sys,'elem')

B_elem =

 0 0 0 1 1

The 'elem' flag causes isstable to return an array of Boolean values, which indicate
the stability of the corresponding entry in the model array. For example, B_elem(4) = 1,
which indicates that sys(1,1,1,4) is stable.

See Also
pole

 issiso

1-349

issiso
Determine if dynamic system model is single-input/single-output (SISO)

Syntax

issiso(sys)

Description

issiso(sys) returns 1 (true) if the dynamic system model sys is SISO and 0 (false)
otherwise.

See Also
size | isempty

1 Functions — Alphabetical List

1-350

isstatic
Determine if model is static or dynamic

Syntax

B = isstatic(sys)

B = isstatic(sys,'elem')

Description

B = isstatic(sys) returns 1 (true) if the model sys is a static model, and and 0 (false)
if sys has dynamics such as states or delays. If sys is a model array, then B is true if all
models in sys are static.

B = isstatic(sys,'elem') checks each model in the model array sys and returns a
logical array of the same size as sys. The logical array indicates which models in sys are
static.

Input Arguments

sys — Model or array to check
input-output model | model array

Model or array to check, specified as an input-output model or model array. Input-output
models include dynamic system models such as numeric LTI models and generalized
models. Input-output models also include static models such as tunable parameters or
generalized matrices.

Output Arguments

B — Flag indicating whether input model is static
logical | logical array

Flag indicating whether input model is static, returned as a logical value or logical array.

 isstatic

1-351

More About
• “Types of Model Objects”

See Also
hasdelay | pole | zero

1 Functions — Alphabetical List

1-352

kalman

Kalman filter design, Kalman estimator

Syntax

[kest,L,P] = kalman(sys,Qn,Rn,Nn)

[kest,L,P] = kalman(sys,Qn,Rn,Nn,sensors,known)

[kest,L,P,M,Z] = kalman(sys,Qn,Rn,...,type)

Description

kalman designs a Kalman filter or Kalman state estimator given a state-space model
of the plant and the process and measurement noise covariance data. The Kalman
estimator provides the optimal solution to the following continuous or discrete estimation
problems.

Continuous-Time Estimation

Given the continuous plant

&x Ax Bu Gw

y Cx Du Hw v

= + +
= + + +

()

(

state equation

measurement equation))

with known inputs u, white process noise w, and white measurement noise v satisfying

E w E v E ww Q E vv R E wv NT T T() () , () , () , ()= = = = =0

construct a state estimate ˆ ()x t that minimizes the steady-state error covariance

 P
t

=
→∞
lim E x x x x

T−{ } −{ }()ˆ ˆ

The optimal solution is the Kalman filter with equations

 kalman

1-353

ˆ ˆ (ˆ)

ˆ

ˆ
ˆ

&x Ax Bu L y Cx Du

y

x

C

I
x

D
u

= + + - -

È

Î
Í

˘

˚
˙ =

È

Î
Í

˘

˚
˙ +

È

Î
Í

˘

˚
˙

0

The filter gain L is determined by solving an algebraic Riccati equation to be

L PC N R
T

= +
-

()
1

where

R R HN N H HQH

N G QH N

T T T

T

= + + +

= +()

and P solves the corresponding algebraic Riccati equation.

The estimator uses the known inputs u and the measurements y to generate the output
and state estimates ŷ and x̂ . Note that ŷ estimates the true plant output

y Cx Du Hw v= + + +

Plant

v

u

u

w

y

Kalman
Filter

y

x

Kalman Estimator

Discrete-Time Estimation

Given the discrete plant

x n Ax n Bu n Gw n

y n Cx n Du n Hw n v n

[] [] [] []

[] [] [] [] []

+ = + +

= + + +

1

1 Functions — Alphabetical List

1-354

and the noise covariance data

E w n w n Q E v n v n R E w n v n NT T T([] []) , ([] []) , ([] [])= = =

The estimator has the following state equation:

ˆ[|] ˆ[|] [] ([] ˆ[|] [])x n n Ax n n Bu n L y n Cx n n Du n+ = - + + - - -1 1 1

The gain matrix L is derived by solving a discrete Riccati equation to be

L APC N CPC R
T T

= + +
-

()()
1

where

R R HN N H HQH

N G QH N

T T T

T

= + + +

= +()

There are two variants of discrete-time Kalman estimators:

• The current estimator generates output estimates ˆ[|]y n n and state estimates ˆ[|]x n n

using all available measurements up to y n[] . This estimator has the output equation

ˆ[|]

ˆ[|]

()
ˆ[|]

()y n n

x n n

C I MC

I MC
x n n

I CM D CMÈ

Î
Í

˘

˚
˙ =

-

-

È

Î
Í

˘

˚
˙ - +

-

-
1

MMD M

u n

y n

È

Î
Í

˘

˚
˙

È

Î
Í

˘

˚
˙

[]

[]

where the innovation gain M is defined as

M PC CPC R
T T

= +
-

()
1

M updates the prediction ˆ[|]x n n -1 using the new measurement y n[] .

ˆ[|] ˆ[|] ([] ˆ[|] []x n n x n n M y n Cx n n Du n

innovation

= - + - - -1 1
1 244444 3344444

)

 kalman

1-355

• The delayed estimator generates output estimates ˆ[|]y n n -1 and state estimates
ˆ[|]x n n -1 using measurements only up to yv[n-1]. This estimator is easier to

implement inside control loops and has the output equation

ˆ[|]

ˆ[|]
ˆ[|]

[]y n n

x n n

C

I
x n n

D u n

y

-

-

È

Î
Í

˘

˚
˙ =

È

Î
Í

˘

˚
˙ - +

È

Î
Í

˘

˚
˙

1

1
1

0

0 0 [[]n

È

Î
Í

˘

˚
˙

[kest,L,P] = kalman(sys,Qn,Rn,Nn) creates a state-space model kest of the
Kalman estimator given the plant model sys and the noise covariance data Qn, Rn, Nn
(matrices Q, R, N described in “Description” on page 1-352). sys must be a state-space
model with matrices A B G C D H,[], ,[] .

The resulting estimator kest has inputs [;]u y and outputs ˆ; ˆy x[] (or their discrete-time
counterparts). You can omit the last input argument Nn when N = 0.

The function kalman handles both continuous and discrete problems and produces a
continuous estimator when sys is continuous and a discrete estimator otherwise. In
continuous time, kalman also returns the Kalman gain L and the steady-state error
covariance matrix P. P solves the associated Riccati equation.

[kest,L,P] = kalman(sys,Qn,Rn,Nn,sensors,known) handles the more general
situation when

• Not all outputs of sys are measured.
• The disturbance inputs w are not the last inputs of sys.

The index vectors sensors and known specify which outputs y of sys are measured and
which inputs u are known (deterministic). All other inputs of sys are assumed stochastic.

[kest,L,P,M,Z] = kalman(sys,Qn,Rn,...,type) specifies the estimator type for
discrete-time plants sys. The string type is either 'current' (default) or 'delayed'.
For discrete-time plants, kalman returns the estimator and innovation gains L and M
and the steady-state error covariances

P E e n n e n n e n n x n x n n

Z

n

T

n

= - - - = - -

=

Æ•

Æ

lim ([|] [|]), [|] [] [|]

lim

1 1 1 1

••

= -E e n n e n n e n n x n x n n
T([|] [|]), [|] [] [|]

1 Functions — Alphabetical List

1-356

Examples

See “LQG Design for the x-Axis” and “Kalman Filtering” for examples that use the
kalman function.

Limitations

The plant and noise data must satisfy:

• (C,A) detectable
•

R > 0 and Q NR NT
- ≥

-1
0

•
(,)A NR C Q NR NT

- -

- -1 1 has no uncontrollable mode on the imaginary axis (or unit
circle in discrete time) with the notation

Q GQG

R R HN N H HQH

N G QH N

T

T T T

T

=

= + + +

= +()

References

[1] Franklin, G.F., J.D. Powell, and M.L. Workman, Digital Control of Dynamic Systems,
Second Edition, Addison-Wesley, 1990.

[2] Lewis, F., Optimal Estimation, John Wiley & Sons, Inc, 1986.

See Also
care | dare | estim | Kalman Filter | kalmd | lqg | lqgreg | ss

Related Examples
• “Kalman Filter Design”

 kalmd

1-357

kalmd

Design discrete Kalman estimator for continuous plant

Syntax

kalmd

[kest,L,P,M,Z] = kalmd(sys,Qn,Rn,Ts)

Description

kalmd designs a discrete-time Kalman estimator that has response characteristics
similar to a continuous-time estimator designed with kalman. This command is useful
to derive a discrete estimator for digital implementation after a satisfactory continuous
estimator has been designed.

[kest,L,P,M,Z] = kalmd(sys,Qn,Rn,Ts) produces a discrete Kalman estimator
kest with sample time Ts for the continuous-time plant

&x Ax Bu gw

y Cx Du vv

= + +
= + +

(state equation)

(measurement equation))

with process noise w and measurement noise v satisfying

E w E v E ww Q E vv R E wvT
n

T
n

T() () , () , () , ()= = = = =0 0

The estimator kest is derived as follows. The continuous plant sys is first discretized
using zero-order hold with sample time Ts (see c2d entry), and the continuous noise
covariance matrices Qn and Rn are replaced by their discrete equivalents

Q e GQG e d

R R T

d
A T AT

d s

T
s

=

=

Ú
t t t

0

/

1 Functions — Alphabetical List

1-358

The integral is computed using the matrix exponential formulas in [2]. A discrete-time
estimator is then designed for the discretized plant and noise. See kalman for details on
discrete-time Kalman estimation.

kalmd also returns the estimator gains L and M, and the discrete error covariance
matrices P and Z (see kalman for details).

Limitations

The discretized problem data should satisfy the requirements for kalman.

References

[1] Franklin, G.F., J.D. Powell, and M.L. Workman, Digital Control of Dynamic Systems,
Second Edition, Addison-Wesley, 1990.

[2] Van Loan, C.F., "Computing Integrals Involving the Matrix Exponential," IEEE
Trans. Automatic Control, AC-15, October 1970.

See Also
kalman | lqrd | lqgreg

 lft

1-359

lft
Generalized feedback interconnection of two models (Redheffer star product)

Syntax
lft

sys = lft(sys1,sys2,nu,ny)

Description
lft forms the star product or linear fractional transformation (LFT) of two model
objects or model arrays. Such interconnections are widely used in robust control
techniques.

sys = lft(sys1,sys2,nu,ny) forms the star product sys of the two models (or
arrays) sys1 and sys2. The star product amounts to the following feedback connection
for single models (or for each model in an array).

This feedback loop connects the first nu outputs of sys2 to the last nu inputs of sys1
(signals u), and the last ny outputs of sys1 to the first ny inputs of sys2 (signals y). The
resulting system sys maps the input vector [w1 ; w2] to the output vector [z1 ; z2].

1 Functions — Alphabetical List

1-360

The abbreviated syntax

sys = lft(sys1,sys2)

produces:

• The lower LFT of sys1 and sys2 if sys2 has fewer inputs and outputs than sys1.
This amounts to deleting w2 and z2 in the above diagram.

• The upper LFT of sys1 and sys2 if sys1 has fewer inputs and outputs than sys2.
This amounts to deleting w1 and z1 in the above diagram.

Limitations

There should be no algebraic loop in the feedback connection.

More About

Algorithms

The closed-loop model is derived by elementary state-space manipulations.

See Also
connect | feedback

 lqg

1-361

lqg
Linear-Quadratic-Gaussian (LQG) design

Syntax

reg = lqg(sys,QXU,QWV)

reg = lqg(sys,QXU,QWV,QI)

reg = lqg(sys,QXU,QWV,QI,'1dof')

reg = lqg(sys,QXU,QWV,QI,'2dof')

Description

reg = lqg(sys,QXU,QWV) computes an optimal linear-quadratic-Gaussian (LQG)
regulator reg given a state-space model sys of the plant and weighting matrices QXU
and QWV. The dynamic regulator sys uses the measurements y to generate a control
signal u that regulates y around the zero value. Use positive feedback to connect this
regulator to the plant output y.

reg
sys

w v

y

u

The LQG regulator minimizes the cost function

J E x u Q
x

u
dtT T

xu= È
Î

˘
˚

È

Î
Í

˘

˚
˙

Ï
Ì
Ô

ÓÔ

¸
˝
Ô

Ǫ̂Æ• Úlim ,
t

t

t

1

0

subject to the plant equations

dx/dt = Ax + Bu + w

y = Cx + Du + v

1 Functions — Alphabetical List

1-362

where the process noise w and measurement noise v are Gaussian white noises with
covariance:

E([w;v] * [w',v']) = QWV

reg = lqg(sys,QXU,QWV,QI) uses the setpoint command r and measurements y
to generate the control signal u. reg has integral action to ensure that y tracks the
command r.

reg
sys

w v

y

u
y

r

The LQG servo-controller minimizes the cost function

J E x u Q
x

u
x Q x dtT T

xu i
T

i i= È
Î

˘
˚

È

Î
Í

˘

˚
˙ +

Ê

Ë
Á

ˆ

¯
˜

Ï
Ì
Ô

ÓÔ

¸
˝
Ô

Æ• Úlim ,
t

t

t
1

0 ˛̨Ô

where xi is the integral of the tracking error r - y. For MIMO systems, r, y, and xi must
have the same length.

reg = lqg(sys,QXU,QWV,QI,'1dof') computes a one-degree-of-freedom servo
controller that takes e = r - y rather than [r ; y] as input.

reg = lqg(sys,QXU,QWV,QI,'2dof') is equivalent to LQG(sys,QXU,QWV,QI) and
produces the two-degree-of-freedom servo-controller shown previously.

Examples

Linear-Quadratic-Gaussian (LQG) Regulator and Servo Controller Design

This example shows how to design an linear-quadratic-Gaussian (LQG) regulator, a
one-degree-of-freedom LQG servo controller, and a two-degree-of-freedom LQG servo
controller for the following system.

 lqg

1-363

u
y

r

LQG Servo Controller

w
v

y
Planttrksys

The plant has three states (x), two control inputs (u), three random inputs (w), one output
(y), measurement noise for the output (v), and the following state and measurement
equations.

dx

dt
Ax Bu w

y Cx Du v

= + +

= + +

where

A B

C D

=

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

=

-

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

= []

0 1 0

0 0 1

1 0 0

0 3 1

0 1

0 3 0 9

1 9 1 3 1

.

. .

. . == -[]0 53 0 61. .

The system has the following noise covariance data:

Q E

R E vv

n
T

n
T

= () =

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

= () =

ww

4 2 0

2 1 0

0 0 1

0 7.

For the regulator, use the following cost function to define the tradeoff between
regulation performance and control effort:

1 Functions — Alphabetical List

1-364

J u x x u u dt
T T

() .= +
È

Î
Í

˘

˚
˙

Ê

Ë
Á

ˆ

¯
˜

•
Ú 0 1

1 0

0 20

For the servo controllers, use the following cost function to define the tradeoff between
tracker performance and control effort:

J u x x x u u dt
T

i

T
() .= + +

È

Î
Í

˘

˚
˙

Ê

Ë
Á

ˆ

¯
˜

•
Ú 0 1

1 0

0 2

2

0

To design the LQG controllers for this system:

1 Create the state-space system by typing the following in the MATLAB Command
Window:

A = [0 1 0;0 0 1;1 0 0];

B = [0.3 1;0 1;-0.3 0.9];

C = [1.9 1.3 1];

D = [0.53 -0.61];

sys = ss(A,B,C,D);

2 Define the noise covariance data and the weighting matrices by typing the following
commands:

nx = 3; %Number of states

ny = 1; %Number of outputs

Qn = [4 2 0; 2 1 0; 0 0 1];

Rn = 0.7;

R = [1 0;0 2]

QXU = blkdiag(0.1*eye(nx),R);

QWV = blkdiag(Qn,Rn);

QI = eye(ny);

3 Form the LQG regulator by typing the following command:

KLQG = lqg(sys,QXU,QWV)

This command returns the following LQG regulator:

a =

 x1_e x2_e x3_e

 x1_e -6.212 -3.814 -4.136

 x2_e -4.038 -3.196 -1.791

 x3_e -1.418 -1.973 -1.766

 lqg

1-365

b =

 y1

 x1_e 2.365

 x2_e 1.432

 x3_e 0.7684

c =

 x1_e x2_e x3_e

 u1 -0.02904 0.0008272 0.0303

 u2 -0.7147 -0.7115 -0.7132

d =

 y1

 u1 0

 u2 0

Input groups:

 Name Channels

 Measurement 1

Output groups:

 Name Channels

 Controls 1,2

Continuous-time model.

4 Form the one-degree-of-freedom LQG servo controller by typing the following
command:

KLQG1 = lqg(sys,QXU,QWV,QI,'1dof')

This command returns the following LQG servo controller:

a =

 x1_e x2_e x3_e xi1

 x1_e -7.626 -5.068 -4.891 0.9018

 x2_e -5.108 -4.146 -2.362 0.6762

 x3_e -2.121 -2.604 -2.141 0.4088

 xi1 0 0 0 0

b =

 e1

 x1_e -2.365

 x2_e -1.432

 x3_e -0.7684

 xi1 1

1 Functions — Alphabetical List

1-366

c =

 x1_e x2_e x3_e xi1

 u1 -0.5388 -0.4173 -0.2481 0.5578

 u2 -1.492 -1.388 -1.131 0.5869

d =

 e1

 u1 0

 u2 0

Input groups:

 Name Channels

 Error 1

Output groups:

 Name Channels

 Controls 1,2

Continuous-time model.

5 Form the two-degree-of-freedom LQG servo controller by typing the following
command:

KLQG2 = lqg(sys,QXU,QWV,QI,'2dof')

This command returns the following LQG servo controller:

a =

 x1_e x2_e x3_e xi1

 x1_e -7.626 -5.068 -4.891 0.9018

 x2_e -5.108 -4.146 -2.362 0.6762

 x3_e -2.121 -2.604 -2.141 0.4088

 xi1 0 0 0 0

b =

 r1 y1

 x1_e 0 2.365

 x2_e 0 1.432

 x3_e 0 0.7684

 xi1 1 -1

c =

 x1_e x2_e x3_e xi1

 u1 -0.5388 -0.4173 -0.2481 0.5578

 u2 -1.492 -1.388 -1.131 0.5869

 lqg

1-367

d =

 r1 y1

 u1 0 0

 u2 0 0

Input groups:

 Name Channels

 Setpoint 1

 Measurement 2

Output groups:

 Name Channels

 Controls 1,2

Continuous-time model.

More About

Tips

lqg can be used for both continuous- and discrete-time plants. In discrete-time, lqg uses
x[n|n-1] as state estimate (see kalman for details).

To compute the LQG regulator, lqg uses the commands lqr and kalman. To compute
the servo-controller, lqg uses the commands lqi and kalman.

When you want more flexibility for designing regulators you can use the lqr, kalman,
and lqgreg commands. When you want more flexibility for designing servo controllers,
you can use the lqi, kalman, and lqgtrack commands. For more information on using
these commands and how to decide when to use them, see “Linear-Quadratic-Gaussian
(LQG) Design for Regulation” and “Linear-Quadratic-Gaussian (LQG) Design of Servo
Controller with Integral Action”.

See Also
lqr | lqi | kalman | lqry | ss | care | dare

1 Functions — Alphabetical List

1-368

lqgreg
Form linear-quadratic-Gaussian (LQG) regulator

Syntax

rlqg = lqgreg(kest,k)

rlqg = lqgreg(kest,k,controls)

Description

lqgreg forms the linear-quadratic-Gaussian (LQG) regulator by connecting the
Kalman estimator designed with kalman and the optimal state-feedback gain designed
with lqr, dlqr, or lqry. The LQG regulator minimizes some quadratic cost function
that trades off regulation performance and control effort. This regulator is dynamic and
relies on noisy output measurements to generate the regulating commands.

In continuous time, the LQG regulator generates the commands

u Kx= - ˆ

where x̂ is the Kalman state estimate. The regulator state-space equations are

ˆ [()] ˆ

ˆ

&x A LC B LD K x Ly

u Kx

= - - - +

= -

where y is the vector of plant output measurements (see kalman for background and
notation). The following diagram shows this dynamic regulator in relation to the plant.

sys

w v

y

uy
kest -K

u

LQG Regulator

 lqgreg

1-369

In discrete time, you can form the LQG regulator using either the delayed state estimate
ˆ[|]x n n -1 of x[n], based on measurements up to y[n–1], or the current state estimate
ˆ[|]x n n , based on all available measurements including y[n]. While the regulator

u n Kx n n[] = − −[]ˆ | 1

is always well-defined, the current regulator

u n Kx n n[] = − []ˆ |

is causal only when I-KMD is invertible (see kalman for the notation). In addition,
practical implementations of the current regulator should allow for the processing time
required to compute u[n] after the measurements y[n] become available (this amounts to
a time delay in the feedback loop).

Examples

See the example “LQG Regulation”.

More About

Tips

rlqg = lqgreg(kest,k) returns the LQG regulator rlqg (a state-space model) given
the Kalman estimator kest and the state-feedback gain matrix k. The same function
handles both continuous- and discrete-time cases. Use consistent tools to design kest
and k:

• Continuous regulator for continuous plant: use lqr or lqry and kalman
• Discrete regulator for discrete plant: use dlqr or lqry and kalman
• Discrete regulator for continuous plant: use lqrd and kalmd

In discrete time, lqgreg produces the regulator

• u n Kx n n[] = − []ˆ | when kest is the “current” Kalman estimator

1 Functions — Alphabetical List

1-370

• u n Kx n n[] = − −[]ˆ | 1 when kest is the “delayed” Kalman estimator

For more information on Kalman estimators, see the kalman reference page.

rlqg = lqgreg(kest,k,controls) handles estimators that have access to additional
deterministic known plant inputs ud. The index vector controls then specifies which
estimator inputs are the controls u, and the resulting LQG regulator rlqg has ud and y
as inputs (see the next figure).

Note Always use positive feedback to connect the LQG regulator to the plant.

uy
kest -K

u

LQG Regulator

ud

See Also
kalman | kalmd | lqr | dlqr | lqrd | lqry | reg

 lqgtrack

1-371

lqgtrack
Form Linear-Quadratic-Gaussian (LQG) servo controller

Syntax

C = lqgtrack(kest,k)

C = lqgtrack(kest,k,'2dof')

C = lqgtrack(kest,k,'1dof')

C = lqgtrack(kest,k,...CONTROLS)

Description

lqgtrack forms a Linear-Quadratic-Gaussian (LQG) servo controller with integral
action for the loop shown in the following figure. This compensator ensures that the
output y tracks the reference command r and rejects process disturbances w and
measurement noise v. lqgtrack assumes that r and y have the same length.

C

w v

y

u
y

r
Plant

Note: Always use positive feedback to connect the LQG servo controller C to the plant
output y.

C = lqgtrack(kest,k) forms a two-degree-of-freedom LQG servo controller C by
connecting the Kalman estimator kest and the state-feedback gain k, as shown in the
following figure. C has inputs [;]r y and generates the command u K x x

i
= - []ˆ ; , where x̂ is

the Kalman estimate of the plant state, and xi is the integrator output.

1 Functions — Alphabetical List

1-372

kest
u

y

r

-K

u

Integrator
r-y

-

y

x

xi

LQG Servo Controller

The size of the gain matrix k determines the length of xi. xi, y, and r all have the same
length.

The two-degree-of-freedom LQG servo controller state-space equations are

ˆ ˆ&

&

x

x

A BK LC LDK BK LDK x

x

L

i

x x i i

i

È

Î
Í
Í

˘

˚
˙
˙

=
- - + - +È

Î
Í

˘

˚
˙

È

Î
Í

˘

˚
˙ +

0 0

0

II I

r

y

u K K
x

xx i
i

-

È

Î
Í

˘

˚
˙
È

Î
Í

˘

˚
˙

= - -[]
È

Î
Í

˘

˚
˙

ˆ

Note: The syntax C = lqgtrack(kest,k,'2dof') is equivalent to C =
lqgtrack(kest,k).

C = lqgtrack(kest,k,'1dof') forms a one-degree-of-freedom LQG servo controller C
that takes the tracking error e = r – y as input instead of [r ; y], as shown in the following
figure.

 lqgtrack

1-373

kest
u

-K

u

Integrator

y

x

xi

-1e
r-y

LQG Servo Controller

The one-degree-of-freedom LQG servo controller state-space equations are

ˆ ˆ&

&

x

x

A BK LC LDK BK LDK x

x

L

i

x x i i

i

È

Î
Í
Í

˘

˚
˙
˙

=
- - + - +È

Î
Í

˘

˚
˙

È

Î
Í

˘

˚
˙ +

-

0 0 II
e

u K K
x

x
x i

i

È

Î
Í

˘

˚
˙

= - -[]
È

Î
Í

˘

˚
˙

ˆ

C = lqgtrack(kest,k,...CONTROLS) forms an LQG servo controller C when the
Kalman estimator kest has access to additional known (deterministic) commands Ud
of the plant. In the index vector CONTROLS, specify which inputs of kest are the control
channels u. The resulting compensator C has inputs

• [Ud ; r ; y] in the two-degree-of-freedom case
• [Ud ; e] in the one-degree-of-freedom case

The corresponding compensator structure for the two-degree-of-freedom cases appears in
the following figure.

kest
u

y

r

-K

u

Integrator
r-y

-

y

x

xi

Ud

LQG Servo Controller

1 Functions — Alphabetical List

1-374

Examples

See the example “Design an LQG Servo Controller”.

More About

Tips

You can use lqgtrack for both continuous- and discrete-time systems.

In discrete-time systems, integrators are based on forward Euler (see lqi for details).
The state estimate x̂ is either x[n|n] or x[n|n–1], depending on the type of estimator
(see kalman for details).

See Also
lqg | lqi | kalman | lqr | lqgreg

 lqi

1-375

lqi
Linear-Quadratic-Integral control

Syntax

[K,S,e] = lqi(SYS,Q,R,N)

Description

lqi computes an optimal state-feedback control law for the tracking loop shown in the
following figure.

Integrator

x x

y

x
r -K

e = r-y

i

sys
u-

For a plant sys with the state-space equations (or their discrete counterpart):

dx

dt
Ax Bu

y Cx Du

= +

= +

the state-feedback control is of the form

u K x x
i

= - [;]

where xi is the integrator output. This control law ensures that the output y tracks
the reference command r. For MIMO systems, the number of integrators equals the
dimension of the output y.

1 Functions — Alphabetical List

1-376

[K,S,e] = lqi(SYS,Q,R,N) calculates the optimal gain matrix K, given a state-
space model SYS for the plant and weighting matrices Q, R, N. The control law u = –Kz =
–K[x;xi] minimizes the following cost functions (for r = 0)

•
J u z Qz u Ru z Nu dtT T T

() { }= + +
•

Ú 2
0

 for continuous time

•
J u z Qz u Ru z NuT T T

n

() { }= + +

=

•

Â 2

0

 for discrete time

In discrete time, lqi computes the integrator output xi using the forward Euler formula

x n x n Ts r n y ni i[] [] ([] [])+ = + -1

where Ts is the sampling time of SYS.

When you omit the matrix N, N is set to 0. lqi also returns the solution S of the
associated algebraic Riccati equation and the closed-loop eigenvalues e.

Limitations

For the following state-space system with a plant with augmented integrator:

d

d

z

t
A z B u

y C z D u

a a

a a

= +

= +

The problem data must satisfy:

• The pair (Aa,Ba) is stabilizable.
• R > 0 and Q NR NT

- ≥
-1

0 .

•
Q NR N A B R NT

a a
T

- -()- -1 1
, has no unobservable mode on the imaginary axis (or

unit circle in discrete time).

 lqi

1-377

More About

Tips

lqi supports descriptor models with nonsingular E. The output S of lqi is the solution
of the Riccati equation for the equivalent explicit state-space model

dx

dt
E Ax E Bu= +

- -1 1

References

[1] P. C. Young and J. C. Willems, “An approach to the linear multivariable
servomechanism problem”, International Journal of Control, Volume 15, Issue 5,
May 1972 , pages 961–979.

See Also
lqr | lqgreg | lqg | care | dare | lqgtrack

1 Functions — Alphabetical List

1-378

lqr
Linear-Quadratic Regulator (LQR) design

Syntax

[K,S,e] = lqr(SYS,Q,R,N)

[K,S,e] = LQR(A,B,Q,R,N)

Description

[K,S,e] = lqr(SYS,Q,R,N) calculates the optimal gain matrix K.

For a continuous time system, the state-feedback law u = –Kx minimizes the quadratic
cost function

J u x Qx u Ru x Nu dtT T T
() ()= + +

•

Ú 2
0

subject to the system dynamics

&x Ax Bu= + .

In addition to the state-feedback gain K, lqr returns the solution S of the associated
Riccati equation

A S SA SB N R B S N QT T T
+ - + + + =

-
() ()

1
0

and the closed-loop eigenvalues e = eig(A-B*K). K is derived from S using

K R B S N
T T

= +
-1

()

For a discrete-time state-space model, u[n] = –Kx[n] minimizes

J x Qx u Ru x NuT T T

n

= + +

=

•

Â { }2

0

 lqr

1-379

subject to x[n + 1] = Ax[n] + Bu[n].

[K,S,e] = LQR(A,B,Q,R,N) is an equivalent syntax for continuous-time models with
dynamics &x Ax Bu= + .

In all cases, when you omit the matrix N, N is set to 0.

Limitations

The problem data must satisfy:

• The pair (A,B) is stabilizable.
• R > 0 and Q NR NT

- ≥
-1

0 .

•
(,)Q NR N A BR NT T

- -

- -1 1 has no unobservable mode on the imaginary axis (or unit
circle in discrete time).

More About

Tips

lqr supports descriptor models with nonsingular E. The output S of lqr is the solution
of the Riccati equation for the equivalent explicit state-space model:

dx

dt
E Ax E Bu= +

- -1 1

See Also
care | dlqr | lqgreg | lqrd | lqry | lqi

1 Functions — Alphabetical List

1-380

lqrd
Design discrete linear-quadratic (LQ) regulator for continuous plant

Syntax

lqrd

[Kd,S,e] = lqrd(A,B,Q,R,Ts)

[Kd,S,e] = lqrd(A,B,Q,R,N,Ts)

Description

lqrd designs a discrete full-state-feedback regulator that has response characteristics
similar to a continuous state-feedback regulator designed using lqr. This command is
useful to design a gain matrix for digital implementation after a satisfactory continuous
state-feedback gain has been designed.

[Kd,S,e] = lqrd(A,B,Q,R,Ts) calculates the discrete state-feedback law

u n K x n
d

[] []= −

that minimizes a discrete cost function equivalent to the continuous cost function

J x Qx u Ru dtT T= +()∞
∫
0

The matrices A and B specify the continuous plant dynamics

&x Ax Bu= +

and Ts specifies the sample time of the discrete regulator. Also returned are the solution
S of the discrete Riccati equation for the discretized problem and the discrete closed-loop
eigenvalues e = eig(Ad-Bd*Kd).

[Kd,S,e] = lqrd(A,B,Q,R,N,Ts) solves the more general problem with a cross-
coupling term in the cost function.

 lqrd

1-381

J x Qx u Ru x Nu dtT T T= + +()∞
∫ 2
0

Limitations

The discretized problem data should meet the requirements for dlqr.

More About

Algorithms

The equivalent discrete gain matrix Kd is determined by discretizing the continuous
plant and weighting matrices using the sample time Ts and the zero-order hold
approximation.

With the notation

Φ Φ

Γ Γ

() , ()

() , ()

τ

τ η

τ

ητ

= =

= =∫
e A T

e Bd B T

A
d s

A
d s

0

the discretized plant has equations

x n A x n B u nd d[] [] []+ = +1

and the weighting matrices for the equivalent discrete cost function are

Q N

N R I

Q N

N R

d d

d
T

d

T

T

T

T

s
È

Î
Í
Í

˘

˚
˙
˙

=
()
()

È

Î

Í
Í

˘

˚

˙
˙

È

Î
Í
Í

˘

˚
˙
˙

(
Ú

F

G

Ft

t

t0

0

)) ()È

Î
Í

˘

˚
˙

G t
t

0 I
d

The integrals are computed using matrix exponential formulas due to Van Loan (see [2]).
The plant is discretized using c2d and the gain matrix is computed from the discretized
data using dlqr.

1 Functions — Alphabetical List

1-382

References

[1] Franklin, G.F., J.D. Powell, and M.L. Workman, Digital Control of Dynamic Systems,
Second Edition, Addison-Wesley, 1980, pp. 439-440.

[2] Van Loan, C.F., "Computing Integrals Involving the Matrix Exponential," IEEE
Trans. Automatic Control, AC-23, June 1978.

See Also
c2d | dlqr | kalmd | lqr

 lqry

1-383

lqry
Form linear-quadratic (LQ) state-feedback regulator with output weighting

Syntax

[K,S,e] = lqry(sys,Q,R,N)

Description

Given the plant

&x Ax Bu

y Cx Du

= +
= +

or its discrete-time counterpart, lqry designs a state-feedback control

u Kx= −

that minimizes the quadratic cost function with output weighting

J u y Qy u Ru y Nu dtT T T
() ()= + +

∞
∫ 2
0

(or its discrete-time counterpart). The function lqry is equivalent to lqr or dlqr with
weighting matrices:

Q N

N R

C

D I

Q N

N R

C D

IT

T

T T

=

0

0

[K,S,e] = lqry(sys,Q,R,N) returns the optimal gain matrix K, the Riccati solution
S, and the closed-loop eigenvalues e = eig(A-B*K). The state-space model sys
specifies the continuous- or discrete-time plant data (A, B, C, D). The default value N=0 is
assumed when N is omitted.

1 Functions — Alphabetical List

1-384

Examples

See “LQG Design for the x-Axis” for an example.

Limitations

The data A B Q R N, , , , must satisfy the requirements for lqr or dlqr.

See Also
lqr | dlqr | kalman | lqgreg

 lsim

1-385

lsim
Simulate time response of dynamic system to arbitrary inputs

Syntax

lsim

lsim(sys,u,t)

lsim(sys,u,t,x0)

lsim(sys,u,t,x0,'zoh')

lsim(sys,u,t,x0,'foh')

lsim(sys)

Description

lsim simulates the (time) response of continuous or discrete linear systems to arbitrary
inputs. When invoked without left-hand arguments, lsim plots the response on the
screen.

lsim(sys,u,t) produces a plot of the time response of the “dynamic system model”
sys to the input time history t,u. The vector t specifies the time samples for the
simulation (in system time units, specified in the TimeUnit property of sys), and consists
of regularly spaced time samples.

t = 0:dt:Tfinal

The matrix u must have as many rows as time samples (length(t)) and as many
columns as system inputs. Each row u(i,:) specifies the input value(s) at the time
sample t(i).

The LTI model sys can be continuous or discrete, SISO or MIMO. In discrete time, u
must be sampled at the same rate as the system (t is then redundant and can be omitted
or set to the empty matrix). In continuous time, the time sampling dt=t(2)-t(1) is
used to discretize the continuous model. If dt is too large (undersampling), lsim issues
a warning suggesting that you use a more appropriate sample time, but will use the
specified sample time. See “Algorithms” on page 1-389 for a discussion of sample
times.

1 Functions — Alphabetical List

1-386

lsim(sys,u,t,x0) further specifies an initial condition x0 for the system states. This
syntax applies only to state-space models.

lsim(sys,u,t,x0,'zoh') or lsim(sys,u,t,x0,'foh') explicitly specifies how
the input values should be interpolated between samples (zero-order hold or linear
interpolation). By default, lsim selects the interpolation method automatically based on
the smoothness of the signal U.

Finally,

lsim(sys1,sys2,...,sysN,u,t)

simulates the responses of several LTI models to the same input history t,u and plots
these responses on a single figure. As with bode or plot, you can specify a particular
color, linestyle, and/or marker for each system, for example,

lsim(sys1,'y:',sys2,'g--',u,t,x0)

The multisystem behavior is similar to that of bode or step.

When invoked with left-hand arguments,

[y,t] = lsim(sys,u,t)

[y,t,x] = lsim(sys,u,t) % for state-space models only

[y,t,x] = lsim(sys,u,t,x0) % with initial state

return the output response y, the time vector t used for simulation, and the state
trajectories x (for state-space models only). No plot is drawn on the screen. The matrix
y has as many rows as time samples (length(t)) and as many columns as system
outputs. The same holds for x with "outputs" replaced by states.

lsim(sys) opens the Linear Simulation Tool GUI. For more information about
working with this GUI, see “Working with the Linear Simulation Tool”.

Examples

Simulate Response to Square Wave

Simulate and plot the response of the following system to a square wave with period of
four seconds:

 lsim

1-387

Create the transfer function, and generate the square wave with gensig. Sample every
0.1 second during 10 seconds.

H = [tf([2 5 1],[1 2 3]);tf([1 -1],[1 1 5])];

[u,t] = gensig('square',4,10,0.1);

Then simulate with lsim.

lsim(H,u,t)

1 Functions — Alphabetical List

1-388

The plot displays both the applied signal and the response.

Simulate Response of Identified Model

Simulate the response of an identified linear model using the same input signal as the
one used for estimation and the initial states returned by the estimation command.

load(fullfile(matlabroot,'toolbox','ident','iddemos','data','dcmotordata'));

z = iddata(y,u,0.1,'Name','DC-motor');

[sys,x0] = n4sid(z,4);

[y,t,x] = lsim(sys, z.InputData, [], x0);

Compare the simulated response y to measured response z.OutputData.

plot(t,z.OutputData,'k',t,y,'r')

legend('Measured','Simulated')

 lsim

1-389

More About

Algorithms

Discrete-time systems are simulated with ltitr (state space) or filter (transfer
function and zero-pole-gain).

Continuous-time systems are discretized with c2d using either the 'zoh' or 'foh'
method ('foh' is used for smooth input signals and 'zoh' for discontinuous signals
such as pulses or square waves). The sampling period is set to the spacing dt between
the user-supplied time samples t.

1 Functions — Alphabetical List

1-390

The choice of sampling period can drastically affect simulation results. To illustrate why,
consider the second-order model

H s

s s

() , .=
+ +

=w

w

w

2

2 22
62 83

To simulate its response to a square wave with period 1 second, you can proceed as
follows:

w2 = 62.83^2;

h = tf(w2,[1 2 w2]);

t = 0:0.1:5; % vector of time samples

u = (rem(t,1) >= 0.5); % square wave values

lsim(h,u,t)

lsim evaluates the specified sample time, and issues a warning:
Warning: Input signal is undersampled. Sample every 0.016 sec or

faster.

 lsim

1-391

To improve on this response, discretize H(s) using the recommended sampling period:

dt = 0.016;

ts = 0:dt:5;

us = (rem(ts,1) >= 0.5);

hd = c2d(h,dt);

lsim(hd,us,ts)

1 Functions — Alphabetical List

1-392

This response exhibits strong oscillatory behavior that is hidden in the undersampled
version.

See Also
gensig | initial | sim | impulse | ltiview | step | lsiminfo

 lsiminfo

1-393

lsiminfo
Compute linear response characteristics

Syntax
S = lsiminfo(y,t,yfinal)

S = lsiminfo(y,t)

S = lsiminfo(...,'SettlingTimeThreshold',ST)

Description
S = lsiminfo(y,t,yfinal) takes the response data (t,y) and a steady-state value
yfinal and returns a structure S containing the following performance indicators:

• SettlingTime — Settling time
• Min — Minimum value of Y
• MinTime — Time at which the min value is reached
• Max — Maximum value of Y
• MaxTime — Time at which the max value is reached

For SISO responses, t and y are vectors with the same length NS. For responses with
NY outputs, you can specify y as an NS-by-NY array and yfinal as a NY-by-1 array.
lsiminfo then returns an NY-by-1 structure array S of performance metrics for each
output channel.

S = lsiminfo(y,t) uses the last sample value of y as steady-state value yfinal. s =
lsiminfo(y) assumes t = 1:NS.

S = lsiminfo(...,'SettlingTimeThreshold',ST) lets you specify the threshold
ST used in the settling time calculation. The response has settled when the error |y(t)
- yfinal| becomes smaller than a fraction ST of its peak value. The default value is
ST=0.02 (2%).

Examples
Create a fourth order transfer function and ascertain the response characteristics.

1 Functions — Alphabetical List

1-394

sys = tf([1 -1],[1 2 3 4]);

[y,t] = impulse(sys);

s = lsiminfo(y,t,0) % final value is 0

s =

 SettlingTime: 22.8626

 Min: -0.4270

 MinTime: 2.0309

 Max: 0.2845

 MaxTime: 4.0619

See Also
impulse | stepinfo | lsim | initial

 lsimplot

1-395

lsimplot
Simulate response of dynamic system to arbitrary inputs and return plot handle

Syntax

h = lsimplot(sys)

lsimplot(sys1,sys2,...)

lsimplot(sys,u,t)

lsimplot(sys,u,t,x0)

lsimplot(sys1,sys2,...,u,t,x0)

lsimplot(AX,...)

lsimplot(..., plotoptions)

lsimplot(sys,u,t,x0,'zoh')

lsimplot(sys,u,t,x0,'foh')

Description

h = lsimplot(sys) opens the Linear Simulation Tool for the “dynamic system model”
sys, which enables interactive specification of driving input(s), the time vector, and
initial state. It also returns the plot handle h. You can use this handle to customize the
plot with the getoptions and setoptions commands. Type

help timeoptions

for a list of available plot options.

lsimplot(sys1,sys2,...) opens the Linear Simulation Tool for multiple models
sys1,sys2,.... Driving inputs are common to all specified systems but initial conditions
can be specified separately for each.

lsimplot(sys,u,t) plots the time response of the model sys to the input signal
described by u and t. The time vector t consists of regularly spaced time samples (in
system time units, specified in the TimeUnit property of sys). For MIMO systems, u is
a matrix with as many columns as inputs and whose ith row specifies the input value
at time t(i). For SISO systems u can be specified either as a row or column vector. For
example,

1 Functions — Alphabetical List

1-396

t = 0:0.01:5;

u = sin(t);

lsimplot(sys,u,t)

simulates the response of a single-input model sys to the input u(t)=sin(t) during 5
seconds.

For discrete-time models, u should be sampled at the same rate as sys (t is then
redundant and can be omitted or set to the empty matrix).

For continuous-time models, choose the sampling period t(2)-t(1) small enough to
accurately describe the input u. lsim issues a warning when u is undersampled, and
hidden oscillations can occur.

lsimplot(sys,u,t,x0) specifies the initial state vector x0 at time t(1) (for state-
space models only). x0 is set to zero when omitted.

lsimplot(sys1,sys2,...,u,t,x0) simulates the responses of multiple LTI models
sys1,sys2,... on a single plot. The initial condition x0 is optional. You can also specify a
color, line style, and marker for each system, as in

lsimplot(sys1,'r',sys2,'y--',sys3,'gx',u,t)

lsimplot(AX,...) plots into the axes with handle AX.

lsimplot(..., plotoptions) plots the initial condition response with the options
specified in plotoptions. Type

help timeoptions

for more detail.

For continuous-time models, lsimplot(sys,u,t,x0,'zoh') or
lsimplot(sys,u,t,x0,'foh') explicitly specifies how the input values should be
interpolated between samples (zero-order hold or linear interpolation). By default,
lsimplot selects the interpolation method automatically based on the smoothness of the
signal u.

See Also
lsim | setoptions | getoptions

 ltiblock.gain

1-397

ltiblock.gain
Tunable static gain block

Syntax

blk = ltiblock.gain(name,Ny,Nu)

blk = ltiblock.gain(name,G)

Description

Model object for creating tunable static gains. ltiblock.gain lets you parametrize
tunable static gains for parameter studies or for automatic tuning with Robust Control
Toolbox tuning commands such as systune or looptune.

ltiblock.gain is part of the “Control Design Block” family of parametric models. Other
Control Design Blocks includeltiblock.pid, ltiblock.ss, and ltiblock.tf.

Construction

blk = ltiblock.gain(name,Ny,Nu) creates a parametric static gain block named
name. This block has Ny outputs and Nu inputs. The tunable parameters are the gains
across each of the Ny-by-Nu I/O channels.

blk = ltiblock.gain(name,G) uses the double array G to dimension the block and
initialize the tunable parameters.

Input Arguments

name

String specifying the block Name. (See “Properties” on page 1-398.)

Ny

Non-negative integer specifying the number of outputs of the parametric static gain block
blk.

1 Functions — Alphabetical List

1-398

Nu

Non-negative integer specifying the number of inputs of the parametric static gain block
blk.

G

Double array of static gain values. The number of rows and columns of G determine
the number of inputs and outputs of blk. The entries G are the initial values of the
parametric gain block parameters.

Properties

Gain

Parametrization of the tunable gain.

blk.Gain is a param.Continuous object. For general information about the properties
of the param.Continuous object blk.Gain, see the param.Continuous object reference
page.

The following fields of blk.Gain are used when you tune blk using hinfstruct:

Field Description

Value Current value of the gain matrix. For a
block that has Ny outputs and Nu inputs,
blk.Gain.Value is a Ny-by-Nu matrix.
If you use the G input argument to create
blk, blk.Gain.Value initializes to the
values of G. Otherwise, all entries of
blk.Gain.Value initialize to zero.
hinfstruct tunes all entries in
blk.Gain.Value except those whose
values are fixed by blk.Gain.Free.
Default: Array of zero values.

Free Array of logical values determining
whether the gain entries in
blk.Gain.Value are fixed or free
parameters.

 ltiblock.gain

1-399

Field Description

• If blk.Gain.Free(i,j) = 1, then
blk.Gain.Value(i,j) is a tunable
parameter.

• If blk.Gain.Free(i,j) = 0, then
blk.Gain.Value(i,j) is fixed.

Default: Array of 1 (true) values.
Minimum Minimum value of the parameter. This

property places a lower bound on the tuned
value of the parameter. For example,
setting blk.Gain.Minimum = 1 ensures
that all entries in the gain matrix have
gain greater than 1.
Default: -Inf.

Maximum Maximum value of the parameter. This
property places an upper bound on the
tuned value of the parameter. For example,
setting blk.Gain.Maximum = 100
ensures that all entries in the gain matrix
have gain less than 100.
Default: Inf.

Ts

Sampling time. For continuous-time models, Ts = 0. For discrete-time models, Ts is
a positive scalar representing the sampling period. This value is expressed in the unit
specified by the TimeUnit property of the model. To denote a discrete-time model with
unspecified sampling time, set Ts = -1.

Changing this property does not discretize or resample the model. Use c2d and d2c to
convert between continuous- and discrete-time representations. Use d2d to change the
sampling time of a discrete-time system.

Default: 0 (continuous time)

1 Functions — Alphabetical List

1-400

TimeUnit

String representing the unit of the time variable. This property specifies the units for the
time variable, the sampling time Ts, and any time delays in the model. Use any of the
following values:

• 'nanoseconds'

• 'microseconds'

• 'milliseconds'

• 'seconds'

• 'minutes'

• 'hours'

• 'days'

• 'weeks'

• 'months'

• 'years'

Changing this property has no effect on other properties, and therefore changes the
overall system behavior. Use chgTimeUnit to convert between time units without
modifying system behavior.

Default: 'seconds'

InputName

Input channel names. Set InputName to a string for single-input model. For a multi-
input model, set InputName to a cell array of strings.

Alternatively, use automatic vector expansion to assign input names for multi-input
models. For example, if sys is a two-input model, enter:

sys.InputName = 'controls';

The input names automatically expand to {'controls(1)';'controls(2)'}.

You can use the shorthand notation u to refer to the InputName property. For example,
sys.u is equivalent to sys.InputName.

Input channel names have several uses, including:

 ltiblock.gain

1-401

• Identifying channels on model display and plots
• Extracting subsystems of MIMO systems
• Specifying connection points when interconnecting models

Default: Empty string '' for all input channels

InputUnit

Input channel units. Use InputUnit to keep track of input signal units. For a single-
input model, set InputUnit to a string. For a multi-input model, set InputUnit to a cell
array of strings. InputUnit has no effect on system behavior.

Default: Empty string '' for all input channels

InputGroup

Input channel groups. The InputGroup property lets you assign the input channels of
MIMO systems into groups and refer to each group by name. Specify input groups as a
structure. In this structure, field names are the group names, and field values are the
input channels belonging to each group. For example:

sys.InputGroup.controls = [1 2];

sys.InputGroup.noise = [3 5];

creates input groups named controls and noise that include input channels 1, 2 and
3, 5, respectively. You can then extract the subsystem from the controls inputs to all
outputs using:

sys(:,'controls')

Default: Struct with no fields

OutputName

Output channel names. Set OutputName to a string for single-output model. For a multi-
output model, set OutputName to a cell array of strings.

Alternatively, use automatic vector expansion to assign output names for multi-output
models. For example, if sys is a two-output model, enter:

sys.OutputName = 'measurements';

The output names to automatically expand to
{'measurements(1)';'measurements(2)'}.

1 Functions — Alphabetical List

1-402

You can use the shorthand notation y to refer to the OutputName property. For example,
sys.y is equivalent to sys.OutputName.

Output channel names have several uses, including:

• Identifying channels on model display and plots
• Extracting subsystems of MIMO systems
• Specifying connection points when interconnecting models

Default: Empty string '' for all input channels

OutputUnit

Output channel units. Use OutputUnit to keep track of output signal units. For
a single-output model, set OutputUnit to a string. For a multi-output model, set
OutputUnit to a cell array of strings. OutputUnit has no effect on system behavior.

Default: Empty string '' for all input channels

OutputGroup

Output channel groups. The OutputGroup property lets you assign the output channels
of MIMO systems into groups and refer to each group by name. Specify output groups as
a structure. In this structure, field names are the group names, and field values are the
output channels belonging to each group. For example:

sys.OutputGroup.temperature = [1];

sys.InputGroup.measurement = [3 5];

creates output groups named temperature and measurement that include output
channels 1, and 3, 5, respectively. You can then extract the subsystem from all inputs to
the measurement outputs using:

sys('measurement',:)

Default: Struct with no fields

Name

System name. Set Name to a string to label the system.

Default: ''

 ltiblock.gain

1-403

Notes

Any text that you want to associate with the system. Set Notes to a string or a cell array
of strings.

Default: {}

UserData

Any type of data you wish to associate with system. Set UserData to any MATLAB data
type.

Default: []

Examples

Create a 2-by-2 parametric gain block of the form

g

g

1

2

0

0

È

Î
Í

˘

˚
˙

where g1 and g2 are tunable parameters, and the off-diagonal elements are fixed to zero.

blk = ltiblock.gain('gainblock',2,2); % 2 outputs, 2 inputs

blk.Gain.Free = [1 0; 0 1]; % fix off-diagonal entries to zero

All entries in blk.Gain.Value initialize to zero. Initialize the diagonal values to 1 as
follows.

blk.Gain.Value = eye(2); % set diagonals to 1

Create a two-input, three-output parametric gain block and initialize all the parameter
values to 1.

To do so, create a matrix to dimension the parametric gain block and initialize the
parameter values.

G = ones(3,2);

blk = ltiblock.gain('gainblock',G);

Create a 2–by-2 parametric gain block and assign names to the inputs.

1 Functions — Alphabetical List

1-404

blk = ltiblock.gain('gainblock',2,2) % 2 outputs, 2 inputs

blk.InputName = {'Xerror','Yerror'} % assign input names

More About

Tips

• Use the blk.Gain.Free field of blk to specify additional structure or fix the values
of specific entries in the block. To fix the gain value from input i to output j, set
blk.Gain.Free(i,j) = 0. To allow hinfstruct to tune this gain value, set
blk.Gain.Free(i,j) = 1.

• To convert an ltiblock.gain parametric model to a numeric (non-tunable) model
object, use model commands such as tf, zpk, or ss.

• “Control Design Blocks”
• “Models with Tunable Coefficients”

See Also
ltiblock.pid | ltiblock.pid2 | ltiblock.ss | ltiblock.tf | genss | systune
| looptune | hinfstruct

 ltiblock.pid

1-405

ltiblock.pid
Tunable PID controller

Syntax

blk = ltiblock.pid(name,type)

blk = ltiblock.pid(name,type,Ts)

blk = ltiblock.pid(name,sys)

Description

Model object for creating tunable one-degree-of-freedom PID controllers. ltiblock.pid
lets you parametrize a tunable SISO PID controller for parameter studies or for
automatic tuning with requires Robust Control Toolbox tuning commands such as
systune, looptune, or hinfstruct.

ltiblock.pid2 is part of the family of parametric “Control Design Blocks”. Other
parametric Control Design Blocks include ltiblock.gain, ltiblock.ss, and
ltiblock.tf.

Construction

blk = ltiblock.pid(name,type) creates the one-degree-of-freedom continuous-time
PID controller:

blk K
K

s

K s

T s
p

i d

f

= + +

+1
,

with tunable parameters Kp, Ki, Kd, and Tf. The string type sets the controller type by
fixing some of these values to zero (see “Input Arguments” on page 1-406).

blk = ltiblock.pid(name,type,Ts) creates a discrete-time PID controller with
sampling time Ts:

1 Functions — Alphabetical List

1-406

blk K K IF z
K

T DF z
p i

d

f

= + () +
+ ()

,

where IF(z) and DF(z) are the discrete integrator formulas for the integral and derivative
terms, respectively. The values of the IFormula and DFormula properties set the
discrete integrator formulas (see “Properties” on page 1-407).

blk = ltiblock.pid(name,sys) uses the dynamic system model, sys, to set the
sampling time, Ts, and the initial values of the parameters Kp, Ki, Kd, and Tf.

Input Arguments

name

PID controller Name, specified as a string. (See “Properties” on page 1-407.)

type

String specifying controller type. Specifying a controller type fixes up to three of the PID
controller parameters. type can take the following values:

String Controller Type Effect on PID Parameters

'P' Proportional only Ki and Kd are fixed to zero;
Tf is fixed to 1; Kp is free

'PI' Proportional-integral Kd is fixed to zero; Tf is fixed
to 1; Kp and Ki are free

'PD' Proportional-derivative
with first-order filter on
derivative action

Ki is fixed to zero; Kp, Kd,
and Tf are free

'PID' Proportional-integral-
derivative with first-order
filter on derivative action

Kp, Ki, Kd, and Tf are free

Ts

Sampling time, specified as a scalar.

sys

Dynamic system model representing a PID controller.

 ltiblock.pid

1-407

Properties
Kp, Ki, Kd, Tf

Parametrization of the PID gains Kp, Ki, Kd, and filter time constant Tf of the tunable
PID controller blk.

The following fields of blk.Kp, blk.Ki, blk.Kd, and blk.Tf are used when you tune
blk using a tuning command such as systune:

Field Description

Value Current value of the parameter.
Free Logical value determining whether the

parameter is fixed or tunable. For example,

• If blk.Kp.Free = 1, then
blk.Kp.Value is tunable.

• If blk.Kp.Free = 0, then
blk.Kp.Value is fixed.

Minimum Minimum value of the parameter. This
property places a lower bound on the tuned
value of the parameter. For example,
setting blk.Kp.Minimum = 0 ensures
that Kp remains positive.
blk.Tf.Minimum must always be positive.

Maximum Maximum value of the parameter. This
property places an upper bound on the
tuned value of the parameter. For example,
setting blk.Tf.Maximum = 100 ensures
that the filter time constant does not
exceed 100.

blk.Kp, blk.Ki, blk.Kd, and blk.Tf are param.Continuous objects. For general
information about the properties of these param.Continuous objects, see the
param.Continuous object reference page.

IFormula, DFormula

Strings setting the discrete integrator formulas IF(z) and DF(z) for the integral and
derivative terms, respectively. IFormula and DFormula can have the following values:

1 Functions — Alphabetical List

1-408

String IF(z) or DF(z) Formula

'ForwardEuler' T

z

s

-1

'BackwardEuler' T z

z

s

-1

'Trapezoidal' T z

z

s

2

1

1

+

-

Default: 'ForwardEuler'

Ts

Sampling time. For continuous-time models, Ts = 0. For discrete-time models, Ts is
a positive scalar representing the sampling period. This value is expressed in the unit
specified by the TimeUnit property of the model. To denote a discrete-time model with
unspecified sampling time, set Ts = -1.

Changing this property does not discretize or resample the model. Use c2d and d2c to
convert between continuous- and discrete-time representations. Use d2d to change the
sampling time of a discrete-time system.

Default: 0 (continuous time)

TimeUnit

String representing the unit of the time variable. This property specifies the units for the
time variable, the sampling time Ts, and any time delays in the model. Use any of the
following values:

• 'nanoseconds'

• 'microseconds'

• 'milliseconds'

• 'seconds'

• 'minutes'

• 'hours'

• 'days'

 ltiblock.pid

1-409

• 'weeks'

• 'months'

• 'years'

Changing this property has no effect on other properties, and therefore changes the
overall system behavior. Use chgTimeUnit to convert between time units without
modifying system behavior.

Default: 'seconds'

InputName

Input channel names. Set InputName to a string for single-input model. For a multi-
input model, set InputName to a cell array of strings.

Alternatively, use automatic vector expansion to assign input names for multi-input
models. For example, if sys is a two-input model, enter:

sys.InputName = 'controls';

The input names automatically expand to {'controls(1)';'controls(2)'}.

You can use the shorthand notation u to refer to the InputName property. For example,
sys.u is equivalent to sys.InputName.

Input channel names have several uses, including:

• Identifying channels on model display and plots
• Extracting subsystems of MIMO systems
• Specifying connection points when interconnecting models

Default: Empty string '' for all input channels

InputUnit

Input channel units. Use InputUnit to keep track of input signal units. For a single-
input model, set InputUnit to a string. For a multi-input model, set InputUnit to a cell
array of strings. InputUnit has no effect on system behavior.

Default: Empty string '' for all input channels

1 Functions — Alphabetical List

1-410

InputGroup

Input channel groups. The InputGroup property lets you assign the input channels of
MIMO systems into groups and refer to each group by name. Specify input groups as a
structure. In this structure, field names are the group names, and field values are the
input channels belonging to each group. For example:

sys.InputGroup.controls = [1 2];

sys.InputGroup.noise = [3 5];

creates input groups named controls and noise that include input channels 1, 2 and
3, 5, respectively. You can then extract the subsystem from the controls inputs to all
outputs using:

sys(:,'controls')

Default: Struct with no fields

OutputName

Output channel names. Set OutputName to a string for single-output model. For a multi-
output model, set OutputName to a cell array of strings.

Alternatively, use automatic vector expansion to assign output names for multi-output
models. For example, if sys is a two-output model, enter:

sys.OutputName = 'measurements';

The output names to automatically expand to
{'measurements(1)';'measurements(2)'}.

You can use the shorthand notation y to refer to the OutputName property. For example,
sys.y is equivalent to sys.OutputName.

Output channel names have several uses, including:

• Identifying channels on model display and plots
• Extracting subsystems of MIMO systems
• Specifying connection points when interconnecting models

Default: Empty string '' for all input channels

 ltiblock.pid

1-411

OutputUnit

Output channel units. Use OutputUnit to keep track of output signal units. For
a single-output model, set OutputUnit to a string. For a multi-output model, set
OutputUnit to a cell array of strings. OutputUnit has no effect on system behavior.

Default: Empty string '' for all input channels

OutputGroup

Output channel groups. The OutputGroup property lets you assign the output channels
of MIMO systems into groups and refer to each group by name. Specify output groups as
a structure. In this structure, field names are the group names, and field values are the
output channels belonging to each group. For example:

sys.OutputGroup.temperature = [1];

sys.InputGroup.measurement = [3 5];

creates output groups named temperature and measurement that include output
channels 1, and 3, 5, respectively. You can then extract the subsystem from all inputs to
the measurement outputs using:

sys('measurement',:)

Default: Struct with no fields

Name

System name. Set Name to a string to label the system.

Default: ''

Notes

Any text that you want to associate with the system. Set Notes to a string or a cell array
of strings.

Default: {}

UserData

Any type of data you wish to associate with system. Set UserData to any MATLAB data
type.

1 Functions — Alphabetical List

1-412

Default: []

Examples

Tunable Controller with a Fixed Parameter

Create a tunable PD controller. Then, initialize the parameter values, and fix the filter
time constant.

blk = ltiblock.pid('pdblock','PD');

blk.Kp.Value = 4; % initialize Kp to 4

blk.Kd.Value = 0.7; % initialize Kd to 0.7

blk.Tf.Value = 0.01; % set parameter Tf to 0.01

blk.Tf.Free = false; % fix parameter Tf to this value

blk

blk =

 Parametric continuous-time PID controller "pdblock" with formula:

 s

 Kp + Kd * --------

 Tf*s+1

 and tunable parameters Kp, Kd.

Type "pid(blk)" to see the current value and "get(blk)" to see all properties.

Controller Initialized by Dynamic System Model

Create a tunable discrete-time PI controller. Use a pid object to initialize the parameters
and other properties.

C = pid(5,2.2,'Ts',0.1,'IFormula','BackwardEuler');

blk = ltiblock.pid('piblock',C)

blk =

 Parametric discrete-time PID controller "piblock" with formula:

 Ts*z

 Kp + Ki * ------

 z-1

 ltiblock.pid

1-413

 and tunable parameters Kp, Ki.

Type "pid(blk)" to see the current value and "get(blk)" to see all properties.

blk takes the value of properties, such as Ts and IFormula, from C.

Controller with Named Input and Output

Create a tunable PID controller, and assign names to the input and output.

blk = ltiblock.pid('pidblock','pid')

blk.InputName = {'error'} % assign input name

blk.OutputName = {'control'} % assign output name

More About

Tips

• You can modify the PID structure by fixing or freeing any of the parameters Kp, Ki,
Kd, and Tf. For example, blk.Tf.Free = false fixes Tf to its current value.

• To convert an ltiblock.pid parametric model to a numeric (nontunable) model
object, use model commands such as pid, pidstd, tf, or ss. You can also use
getValue to obtain the current value of a tunable model.

• “Control Design Blocks”
• “Models with Tunable Coefficients”

See Also
ltiblock.pid2 | ltiblock.ss | ltiblock.tf | systune | looptune |
hinfstruct | getValue

1 Functions — Alphabetical List

1-414

ltiblock.pid2
Tunable two-degree-of-freedom PID controller

Syntax

blk = ltiblock.pid2(name,type)

blk = ltiblock.pid2(name,type,Ts)

blk = ltiblock.pid2(name,sys)

Description

Model object for creating tunable two-degree-of-freedom PID controllers.
ltiblock.pid2 lets you parametrize a tunable SISO two-degree-of-freedom PID
controller. You can use this parametrized controller for parameter studies or for
automatic tuning with Robust Control Toolbox tuning commands such as systune,
looptune, or hinfstruct.

ltiblock.pid2 is part of the family of parametric “Control Design Blocks”. Other
parametric Control Design Blocks include ltiblock.gain, ltiblock.ss, and
ltiblock.tf.

Construction

blk = ltiblock.pid2(name,type) creates the two-degree-of-freedom continuous-
time PID controller described by the equation:

u K br y
K

s
r y

K s

T s
cr yp

i d

f

= -() + -() +
+

-()
1

.

r is the setpoint command, y is the measured response to that setpoint, and u is the
control signal, as shown in the following illustration.

r
blk u

y

 ltiblock.pid2

1-415

The tunable parameters of the block are:

• Scalar gains Kp, Ki, and Kd
• Filter time constant Tf
• Scalar weights b and c

The string type sets the controller type by fixing some of these values to zero (see “Input
Arguments” on page 1-415).

blk = ltiblock.pid2(name,type,Ts) creates a discrete-time PID controller with
sampling time Ts. The equation describing this controller is:

u K br y K IF z r y
K

T DF z
cr yp i

d

f

= -() + () -() +
+ ()

-().

IF(z) and DF(z) are the discrete integrator formulas for the integral and derivative terms,
respectively. The values of the IFormula and DFormula properties set the discrete
integrator formulas (see “Properties” on page 1-416).

blk = ltiblock.pid2(name,sys) uses the dynamic system model, sys, to set the
sampling time, Ts, and the initial values of all the tunable parameters. The model sys
must be compatible with the equation of a two-degree-of-freedom PID controller.

Input Arguments

name

PID controller Name, specified as a string. (See “Properties” on page 1-416.)

type

Controller type, specified as a string. Specifying a controller type fixes up to three of the
PID controller parameters. type can take the following values:

String Controller Type Effect on PID Parameters

'P' Proportional only Ki and Kd are fixed to zero;
Tf is fixed to 1; Kp is free

'PI' Proportional-integral Kd is fixed to zero; Tf is fixed
to 1; Kp and Ki are free

1 Functions — Alphabetical List

1-416

String Controller Type Effect on PID Parameters

'PD' Proportional-derivative
with first-order filter on
derivative action

Ki is fixed to zero; Kp, Kd,
and Tf are free

'PID' Proportional-integral-
derivative with first-order
filter on derivative action

Kp, Ki, Kd, and Tf are free

Ts

Sampling time, specified as a scalar.

sys

Dynamic system model representing a two-degree-of-freedom PID controller.

Properties

Kp,Ki,Kd,Tf,b,c

Parametrization of the PID gains Kp, Ki, Kd, the filter time constant, Tf, and the scalar
gains, b and c.

The following fields of blk.Kp, blk.Ki, blk.Kd, blk.Tf, blk.b, and blk.c are used
when you tune blk using a tuning command such as systune:

Field Description

Value Current value of the parameter.
blk.b.Value, and blk.c.Value are
always nonnegative.

Free Logical value determining whether the
parameter is fixed or tunable. For example,

• If blk.Kp.Free = 1, then
blk.Kp.Value is tunable.

• If blk.Kp.Free = 0, then
blk.Kp.Value is fixed.

 ltiblock.pid2

1-417

Field Description

Minimum Minimum value of the parameter. This
property places a lower bound on the tuned
value of the parameter. For example,
setting blk.Kp.Minimum = 0 ensures
that Kp remains positive.
blk.Tf.Minimum must always be positive.

Maximum Maximum value of the parameter. This
property places an upper bound on the
tuned value of the parameter. For example,
setting blk.c.Maximum = 1 ensures that
c does not exceed unity.

blk.Kp, blk.Ki, blk.Kd, blk.Tf, blk.b, and blk.c are param.Continuous objects.
For more information about the properties of these param.Continuous objects, see the
param.Continuous object reference page.

IFormula, DFormula

Strings setting the discrete integrator formulas IF(z) and DF(z) for the integral and
derivative terms, respectively. IFormula and DFormula can have the following values:

String IF(z) or DF(z) Formula

'ForwardEuler' T

z

s

-1

'BackwardEuler' T z

z

s

-1

'Trapezoidal' T z

z

s

2

1

1

+

-

Default: 'ForwardEuler'

Ts

Sampling time. For continuous-time models, Ts = 0. For discrete-time models, Ts is
a positive scalar representing the sampling period. This value is expressed in the unit

1 Functions — Alphabetical List

1-418

specified by the TimeUnit property of the model. To denote a discrete-time model with
unspecified sampling time, set Ts = -1.

Changing this property does not discretize or resample the model. Use c2d and d2c to
convert between continuous- and discrete-time representations. Use d2d to change the
sampling time of a discrete-time system.

Default: 0 (continuous time)

TimeUnit

String representing the unit of the time variable. This property specifies the units for the
time variable, the sampling time Ts, and any time delays in the model. Use any of the
following values:

• 'nanoseconds'

• 'microseconds'

• 'milliseconds'

• 'seconds'

• 'minutes'

• 'hours'

• 'days'

• 'weeks'

• 'months'

• 'years'

Changing this property has no effect on other properties, and therefore changes the
overall system behavior. Use chgTimeUnit to convert between time units without
modifying system behavior.

Default: 'seconds'

InputName

Input channel names. Set InputName to a string for single-input model. For a multi-
input model, set InputName to a cell array of strings.

Alternatively, use automatic vector expansion to assign input names for multi-input
models. For example, if sys is a two-input model, enter:

sys.InputName = 'controls';

 ltiblock.pid2

1-419

The input names automatically expand to {'controls(1)';'controls(2)'}.

You can use the shorthand notation u to refer to the InputName property. For example,
sys.u is equivalent to sys.InputName.

Input channel names have several uses, including:

• Identifying channels on model display and plots
• Extracting subsystems of MIMO systems
• Specifying connection points when interconnecting models

Default: Empty string '' for all input channels

InputUnit

Input channel units. Use InputUnit to keep track of input signal units. For a single-
input model, set InputUnit to a string. For a multi-input model, set InputUnit to a cell
array of strings. InputUnit has no effect on system behavior.

Default: Empty string '' for all input channels

InputGroup

Input channel groups. The InputGroup property lets you assign the input channels of
MIMO systems into groups and refer to each group by name. Specify input groups as a
structure. In this structure, field names are the group names, and field values are the
input channels belonging to each group. For example:

sys.InputGroup.controls = [1 2];

sys.InputGroup.noise = [3 5];

creates input groups named controls and noise that include input channels 1, 2 and
3, 5, respectively. You can then extract the subsystem from the controls inputs to all
outputs using:

sys(:,'controls')

Default: Struct with no fields

OutputName

Output channel names. Set OutputName to a string for single-output model. For a multi-
output model, set OutputName to a cell array of strings.

1 Functions — Alphabetical List

1-420

Alternatively, use automatic vector expansion to assign output names for multi-output
models. For example, if sys is a two-output model, enter:

sys.OutputName = 'measurements';

The output names to automatically expand to
{'measurements(1)';'measurements(2)'}.

You can use the shorthand notation y to refer to the OutputName property. For example,
sys.y is equivalent to sys.OutputName.

Output channel names have several uses, including:

• Identifying channels on model display and plots
• Extracting subsystems of MIMO systems
• Specifying connection points when interconnecting models

Default: Empty string '' for all input channels

OutputUnit

Output channel units. Use OutputUnit to keep track of output signal units. For
a single-output model, set OutputUnit to a string. For a multi-output model, set
OutputUnit to a cell array of strings. OutputUnit has no effect on system behavior.

Default: Empty string '' for all input channels

OutputGroup

Output channel groups. The OutputGroup property lets you assign the output channels
of MIMO systems into groups and refer to each group by name. Specify output groups as
a structure. In this structure, field names are the group names, and field values are the
output channels belonging to each group. For example:

sys.OutputGroup.temperature = [1];

sys.InputGroup.measurement = [3 5];

creates output groups named temperature and measurement that include output
channels 1, and 3, 5, respectively. You can then extract the subsystem from all inputs to
the measurement outputs using:

sys('measurement',:)

 ltiblock.pid2

1-421

Default: Struct with no fields

Name

System name. Set Name to a string to label the system.

Default: ''

Notes

Any text that you want to associate with the system. Set Notes to a string or a cell array
of strings.

Default: {}

UserData

Any type of data you wish to associate with system. Set UserData to any MATLAB data
type.

Default: []

Examples

Tunable Two-Degree-of-Freedom Controller with a Fixed Parameter

Create a tunable two-degree-of-freedom PD controller. Then, initialize the parameter
values, and fix the filter time constant.

blk = ltiblock.pid2('pdblock','PD');

blk.b.Value = 1;

blk.c.Value = 0.5;

blk.Tf.Value = 0.01;

blk.Tf.Free = false;

blk

blk =

 Parametric continuous-time 2-DOF PID controller "pdblock" with equation:

 s

 u = Kp (b*r-y) + Kd -------- (c*r-y)

1 Functions — Alphabetical List

1-422

 Tf*s+1

 where r,y are the controller inputs and Kp, Kd, b, c are tunable gains.

Type "showBlockValue(blk)" to see the current value and "get(blk)" to see all properties.

Controller Initialized by Dynamic System Model

Create a tunable two-degree-of-freedom PI controller. Use a two-input, one-output tf
model to initialize the parameters and other properties.

s = tf('s');

Kp = 10;

Ki = 0.1;

b = 0.7;

sys = [(b*Kp + Ki/s), (-Kp - Ki/s)];

blk = ltiblock.pid2('PI2dof',sys)

blk =

 Parametric continuous-time 2-DOF PID controller "PI2dof" with equation:

 1

 u = Kp (b*r-y) + Ki --- (r-y)

 s

 where r,y are the controller inputs and Kp, Ki, b are tunable gains.

Type "showBlockValue(blk)" to see the current value and "get(blk)" to see all properties.

blk takes initial parameter values from sys.

If sys is a discrete-time system, blk takes the value of properties, such as Ts and
IFormula, from sys.

Controller with Named Inputs and Output

Create a tunable PID controller, and assign names to the inputs and output.

blk = ltiblock.pid2('pidblock','pid');

blk.InputName = {'reference','measurement'};

blk.OutputName = {'control'};

blk.InputName is a cell array containing two strings, because a two-degree-of-freedom
PID controller has two inputs.

 ltiblock.pid2

1-423

More About

Tips

• You can modify the PID structure by fixing or freeing any of the parameters. For
example, blk.Tf.Free = false fixes Tf to its current value.

• To convert a ltiblock.pid2 parametric model to a numeric (nontunable) model
object, use model commands such as tf or ss. You can also use getValue to obtain
the current value of a tunable model.

• “Control Design Blocks”
• “Models with Tunable Coefficients”

See Also
ltiblock.pid | ltiblock.ss | ltiblock.tf | systune | looptune | hinfstruct
| getValue

1 Functions — Alphabetical List

1-424

ltiblock.ss
Tunable fixed-order state-space model

Syntax

blk = ltiblock.ss(name,Nx,Ny,Nu)

blk = ltiblock.ss(name,Nx,Ny,Nu,Ts)

blk = ltiblock.ss(name,sys)

blk = ltiblock.ss(...,Astruct)

Description

Model object for creating tunable fixed-order state-space models. ltiblock.ss lets you
parametrize a state-space model of a given order for parameter studies or for automatic
tuning with Robust Control Toolbox tuning commands such as systune or looptune.

ltiblock.ss is part of the “Control Design Block” family of parametric models. Other
Control Design Blocks includeltiblock.pid, ltiblock.gain, and ltiblock.tf.

Construction

blk = ltiblock.ss(name,Nx,Ny,Nu) creates the continuous-time parametric state-
space model named name. The state-space model blk has Nx states,Ny outputs, and Nu
inputs. The tunable parameters are the entries in the A, B, C, and D matrices of the
state-space model.

blk = ltiblock.ss(name,Nx,Ny,Nu,Ts) creates a discrete-time parametric state-
space model with sampling time Ts.

blk = ltiblock.ss(name,sys) uses the dynamic system sys to dimension the
parametric state-space model, set its sampling time, and initialize the tunable
parameters.

blk = ltiblock.ss(...,Astruct) creates a parametric state-space model whose A
matrix is restricted to the structure specified in Astruct.

 ltiblock.ss

1-425

Input Arguments

name

String specifying the Name of the parametric state-space model blk. (See “Properties” on
page 1-426.)

Nx

Nonnegative integer specifying the number of states (order) of the parametric state-space
model blk.

Ny

Nonnegative integer specifying the number of outputs of the parametric state-space
model blk.

Nu

Nonnegative integer specifying the number of inputs of the parametric state-space model
blk.

Ts

Scalar sampling time.

Astruct

String specifying constraints on the form of the A matrix of the parametric state-space
model blk. Astruct can take the following values:

String Structure of A matrix

'tridiag' A is tridiagonal. In tridiagonal form, A has
free elements only in the main diagonal,
the first diagonal below the main diagonal,
and the first diagonal above the main
diagonal. The remaining elements of A are
fixed to zero.

'full' A is full (every entry in A is a free
parameter).

'companion' A is in companion form. In companion
form, the characteristic polynomial of the

1 Functions — Alphabetical List

1-426

String Structure of A matrix

system appears explicitly in the rightmost
column of the A matrix. See canon for
more information.

If you do not specify Astruct, blk defaults to 'tridiag' form.

sys

Dynamic system model providing number of states, number of inputs and outputs,
sampling time, and initial values of the parameters of blk. To obtain the dimensions
and initial parameter values, ltiblock.ss converts sys to a state-space model with
the structure specified in Astruct. If you omit Astruct, ltiblock.ss converts sys into
tridiagonal state-space form.

Properties

a, b, c, d

Parametrization of the state-space matrices A, B, C, and D of the tunable state-space
model blk.

blk.a, blk.b, blk.c, and blk.d are param.Continuous objects. For general
information about the properties of these param.Continuous objects, see the
param.Continuous object reference page.

The following fields of blk.a, blk.b, blk.c, and blk.d are used when you tune blk
using hinfstruct:

Field Description

Value Current values of the entries in the
parametrized state-space matrix. For
example, blk.a.Value contains the values
of the A matrix of blk.
hinfstruct tunes all entries in
blk.a.Value, blk.b.Value,
blk.c.Value, and blk.d.Value
except those whose values are fixed by
blk.Gain.Free.

 ltiblock.ss

1-427

Field Description

Free 2-D array of logical values determining
whether the corresponding state-space
matrix parameters are fixed or free
parameters. For example:

• If blk.a.Free(i,j) = 1, then
blk.a.Value(i,j) is a tunable
parameter.

• If blk.a.Free(i,j) = 0, then
blk.a.Value(i,j) is fixed.

Defaults: By default, all entries in b, c, and
c are tunable. The default free entries in a
depend upon the value of Astruct:

• 'tridiag' — entries on the three
diagonals of blk.a.Free are 1; the rest
are 0.

• 'full' — all entries in blk.a.Free
are 0.

• 'companion' — blk.a.Free(1,:) =
1 and blk.a.Free(j,j-1) = 1; all
other entries are 0.

Minimum Minimum value of the parameter. This
property places a lower bound on the tuned
value of the parameter. For example,
setting blk.a.Minimum(1,1) = 0
ensures that the first entry in the A matrix
remains positive.
Default: -Inf.

Maximum Maximum value of the parameter. This
property places an upper bound on the
tuned value of the parameter. For example,
setting blk.a.Maximum(1,1) = 0
ensures that the first entry in the A matrix
remains negative.
Default: Inf.

1 Functions — Alphabetical List

1-428

StateName

State names. For first-order models, set StateName to a string. For models with two
or more states, set StateName to a cell array of strings . Use an empty string '' for
unnamed states.

Default: Empty string '' for all states

StateUnit

State units. Use StateUnit to keep track of the units each state is expressed in. For
first-order models, set StateUnit to a string. For models with two or more states, set
StateUnit to a cell array of strings. StateUnit has no effect on system behavior.

Default: Empty string '' for all states

Ts

Sampling time. For continuous-time models, Ts = 0. For discrete-time models, Ts is
a positive scalar representing the sampling period. This value is expressed in the unit
specified by the TimeUnit property of the model. To denote a discrete-time model with
unspecified sampling time, set Ts = -1.

Changing this property does not discretize or resample the model. Use c2d and d2c to
convert between continuous- and discrete-time representations. Use d2d to change the
sampling time of a discrete-time system.

Default: 0 (continuous time)

TimeUnit

String representing the unit of the time variable. This property specifies the units for the
time variable, the sampling time Ts, and any time delays in the model. Use any of the
following values:

• 'nanoseconds'

• 'microseconds'

• 'milliseconds'

• 'seconds'

• 'minutes'

 ltiblock.ss

1-429

• 'hours'

• 'days'

• 'weeks'

• 'months'

• 'years'

Changing this property has no effect on other properties, and therefore changes the
overall system behavior. Use chgTimeUnit to convert between time units without
modifying system behavior.

Default: 'seconds'

InputName

Input channel names. Set InputName to a string for single-input model. For a multi-
input model, set InputName to a cell array of strings.

Alternatively, use automatic vector expansion to assign input names for multi-input
models. For example, if sys is a two-input model, enter:

sys.InputName = 'controls';

The input names automatically expand to {'controls(1)';'controls(2)'}.

You can use the shorthand notation u to refer to the InputName property. For example,
sys.u is equivalent to sys.InputName.

Input channel names have several uses, including:

• Identifying channels on model display and plots
• Extracting subsystems of MIMO systems
• Specifying connection points when interconnecting models

Default: Empty string '' for all input channels

InputUnit

Input channel units. Use InputUnit to keep track of input signal units. For a single-
input model, set InputUnit to a string. For a multi-input model, set InputUnit to a cell
array of strings. InputUnit has no effect on system behavior.

1 Functions — Alphabetical List

1-430

Default: Empty string '' for all input channels

InputGroup

Input channel groups. The InputGroup property lets you assign the input channels of
MIMO systems into groups and refer to each group by name. Specify input groups as a
structure. In this structure, field names are the group names, and field values are the
input channels belonging to each group. For example:

sys.InputGroup.controls = [1 2];

sys.InputGroup.noise = [3 5];

creates input groups named controls and noise that include input channels 1, 2 and
3, 5, respectively. You can then extract the subsystem from the controls inputs to all
outputs using:

sys(:,'controls')

Default: Struct with no fields

OutputName

Output channel names. Set OutputName to a string for single-output model. For a multi-
output model, set OutputName to a cell array of strings.

Alternatively, use automatic vector expansion to assign output names for multi-output
models. For example, if sys is a two-output model, enter:

sys.OutputName = 'measurements';

The output names to automatically expand to
{'measurements(1)';'measurements(2)'}.

You can use the shorthand notation y to refer to the OutputName property. For example,
sys.y is equivalent to sys.OutputName.

Output channel names have several uses, including:

• Identifying channels on model display and plots
• Extracting subsystems of MIMO systems
• Specifying connection points when interconnecting models

Default: Empty string '' for all input channels

 ltiblock.ss

1-431

OutputUnit

Output channel units. Use OutputUnit to keep track of output signal units. For
a single-output model, set OutputUnit to a string. For a multi-output model, set
OutputUnit to a cell array of strings. OutputUnit has no effect on system behavior.

Default: Empty string '' for all input channels

OutputGroup

Output channel groups. The OutputGroup property lets you assign the output channels
of MIMO systems into groups and refer to each group by name. Specify output groups as
a structure. In this structure, field names are the group names, and field values are the
output channels belonging to each group. For example:

sys.OutputGroup.temperature = [1];

sys.InputGroup.measurement = [3 5];

creates output groups named temperature and measurement that include output
channels 1, and 3, 5, respectively. You can then extract the subsystem from all inputs to
the measurement outputs using:

sys('measurement',:)

Default: Struct with no fields

Name

System name. Set Name to a string to label the system.

Default: ''

Notes

Any text that you want to associate with the system. Set Notes to a string or a cell array
of strings.

Default: {}

UserData

Any type of data you wish to associate with system. Set UserData to any MATLAB data
type.

Default: []

1 Functions — Alphabetical List

1-432

Examples

Create a parametrized 5th-order SISO model with zero D matrix.

 blk = ltiblock.ss('ssblock',5,1,1);

 blk.d.Value = 0; % set D = 0

 blk.d.Free = false; % fix D to zero

By default, the A matrix is in tridiagonal form. To parametrize the model in companion
form, use the 'companion' input argument:

 blk = ltiblock.ss('ssblock',5,1,1,'companion');

 blk.d.Value = 0; % set D = 0

 blk.d.Free = false; % fix D to zero

Create a parametric state-space model, and assign names to the inputs.

blk = ltiblock.ss('ssblock',5,2,2) % 5 states, 2 outputs, 2 inputs

blk.InputName = {'Xerror','Yerror'} % assign input names

More About

Tips

• Use the Astruct input argument to constrain the structure of the A matrix of the
parametric state-space model. To impose additional structure constrains on the
state-space matrices, use the fields blk.a.Free, blk.b.Free, blk.c.Free, and
blk.d.Free to fix the values of specific entries in the parameter matrices.

For example, to fix the value of blk.b(i,j), set blk.b.Free(i,j) = 0. To allow
hinfstruct to tune blk.b(i,j), set blk.b.Free(i,j) = 1.

• To convert an ltiblock.ss parametric model to a numeric (non-tunable) model
object, use model commands such as ss, tf, or zpk.

• “Control Design Blocks”
• “Models with Tunable Coefficients”

See Also
ltiblock.pid | ltiblock.pid2 | ltiblock.ss | ltiblock.tf | genss | systune
| looptune | hinfstruct

 ltiblock.tf

1-433

ltiblock.tf

Tunable transfer function with fixed number of poles and zeros

Syntax

blk = ltiblock.tf(name,Nz,Np)

blk = ltiblock.tf(name,Nz,Np,Ts)

blk = ltiblock.tf(name,sys)

Description

Model object for creating tunable SISO transfer function models of fixed order.
ltiblock.tf lets you parametrize a transfer function of a given orderfor parameter
studies or for automatic tuning with Robust Control Toolbox tuning commands such as
systune or looptune.

ltiblock.tf is part of the “Control Design Block” family of parametric models. Other
Control Design Blocks includeltiblock.pid, ltiblock.ss, and ltiblock.gain.

Construction

blk = ltiblock.tf(name,Nz,Np) creates the parametric SISO transfer function:

blk
a s a s a s a

s b s b s b

m
m

m
m

n
n

n
=

+ + + +

+ + + +

-

-

-

-

1
1

1 0

1

1

1 0

…

…

.

n = Np is the maximum number of poles of blk, and m = Nz is the maximum number of
zeros. The tunable parameters are the numerator and denominator coefficients a0, ..., am
and b0, ..., bn–1. The leading coefficient of the denominator is fixed to 1.

blk = ltiblock.tf(name,Nz,Np,Ts) creates a discrete-time parametric transfer
function with sampling time Ts.

1 Functions — Alphabetical List

1-434

blk = ltiblock.tf(name,sys) uses the tf model sys to set the number of poles,
number of zeros, sampling time, and initial parameter values.

Input Arguments

name

String specifying the Name of the parametric transfer function blk. (See “Properties” on
page 1-434.)

Nz

Nonnegative integer specifying the number of zeros of the parametric transfer function
blk.

Np

Nonnegative integer specifying the number of poles of the parametric transfer function
blk.

Ts

Scalar sampling time.

sys

tf model providing number of poles, number of zeros, sampling time, and initial values
of the parameters of blk.

Properties

num, den

Parametrization of the numerator coefficients am, ..., a0 and the denominator coefficients
1,bn–1, ..., b0 of the tunable transfer function blk.

blk.num and blk.den are param.Continuous objects. For general information about
the properties of these param.Continuous objects, see the param.Continuous object
reference page.

 ltiblock.tf

1-435

The following fields of blk.num and blk.den are used when you tune blk using
hinfstruct:

Field Description

Value Array of current values of the numerator
am, ..., a0 or the denominator coefficients
1,bn–1, ..., b0. blk.num.Value has length
Nz + 1. blk.den.Value has length
Np + 1. The leading coefficient of the
denominator (blk.den.Value(1)) is
always fixed to 1.
By default, the coefficients initialize to
values that yield a stable, strictly proper
transfer function. Use the input sys to
initialize the coefficients to different
values.
hinfstruct tunes all values except those
whose Free field is zero.

Free Array of logical values determining
whether the coefficients are fixed or
tunable. For example,

• If blk.num.Free(j) = 1, then
blk.num.Value(j) is tunable.

• If blk.num.Free(j) = 0, then
blk.num.Value(j) is fixed.

Default: blk.den.Free(1) = 0; all other
entries are 1.

Minimum Minimum value of the parameter. This
property places a lower bound on the tuned
value of the parameter. For example,
setting blk.num.Minimum(1) = 0
ensures that the leading coefficient of the
numerator remains positive.
Default: -Inf.

Maximum Maximum value of the parameter. This
property places an upper bound on the

1 Functions — Alphabetical List

1-436

Field Description

tuned value of the parameter. For example,
setting blk.num.Maximum(1) = 1
ensures that the leading coefficient of the
numerator does not exceed 1.
Default: Inf.

Ts

Sampling time. For continuous-time models, Ts = 0. For discrete-time models, Ts is
a positive scalar representing the sampling period. This value is expressed in the unit
specified by the TimeUnit property of the model. To denote a discrete-time model with
unspecified sampling time, set Ts = -1.

Changing this property does not discretize or resample the model. Use c2d and d2c to
convert between continuous- and discrete-time representations. Use d2d to change the
sampling time of a discrete-time system.

Default: 0 (continuous time)

TimeUnit

String representing the unit of the time variable. This property specifies the units for the
time variable, the sampling time Ts, and any time delays in the model. Use any of the
following values:

• 'nanoseconds'

• 'microseconds'

• 'milliseconds'

• 'seconds'

• 'minutes'

• 'hours'

• 'days'

• 'weeks'

• 'months'

• 'years'

 ltiblock.tf

1-437

Changing this property has no effect on other properties, and therefore changes the
overall system behavior. Use chgTimeUnit to convert between time units without
modifying system behavior.

Default: 'seconds'

InputName

Input channel names. Set InputName to a string for single-input model. For a multi-
input model, set InputName to a cell array of strings.

Alternatively, use automatic vector expansion to assign input names for multi-input
models. For example, if sys is a two-input model, enter:

sys.InputName = 'controls';

The input names automatically expand to {'controls(1)';'controls(2)'}.

You can use the shorthand notation u to refer to the InputName property. For example,
sys.u is equivalent to sys.InputName.

Input channel names have several uses, including:

• Identifying channels on model display and plots
• Extracting subsystems of MIMO systems
• Specifying connection points when interconnecting models

Default: Empty string '' for all input channels

InputUnit

Input channel units. Use InputUnit to keep track of input signal units. For a single-
input model, set InputUnit to a string. For a multi-input model, set InputUnit to a cell
array of strings. InputUnit has no effect on system behavior.

Default: Empty string '' for all input channels

InputGroup

Input channel groups. The InputGroup property lets you assign the input channels of
MIMO systems into groups and refer to each group by name. Specify input groups as a
structure. In this structure, field names are the group names, and field values are the
input channels belonging to each group. For example:

1 Functions — Alphabetical List

1-438

sys.InputGroup.controls = [1 2];

sys.InputGroup.noise = [3 5];

creates input groups named controls and noise that include input channels 1, 2 and
3, 5, respectively. You can then extract the subsystem from the controls inputs to all
outputs using:

sys(:,'controls')

Default: Struct with no fields

OutputName

Output channel names. Set OutputName to a string for single-output model. For a multi-
output model, set OutputName to a cell array of strings.

Alternatively, use automatic vector expansion to assign output names for multi-output
models. For example, if sys is a two-output model, enter:

sys.OutputName = 'measurements';

The output names to automatically expand to
{'measurements(1)';'measurements(2)'}.

You can use the shorthand notation y to refer to the OutputName property. For example,
sys.y is equivalent to sys.OutputName.

Output channel names have several uses, including:

• Identifying channels on model display and plots
• Extracting subsystems of MIMO systems
• Specifying connection points when interconnecting models

Default: Empty string '' for all input channels

OutputUnit

Output channel units. Use OutputUnit to keep track of output signal units. For
a single-output model, set OutputUnit to a string. For a multi-output model, set
OutputUnit to a cell array of strings. OutputUnit has no effect on system behavior.

Default: Empty string '' for all input channels

 ltiblock.tf

1-439

OutputGroup

Output channel groups. The OutputGroup property lets you assign the output channels
of MIMO systems into groups and refer to each group by name. Specify output groups as
a structure. In this structure, field names are the group names, and field values are the
output channels belonging to each group. For example:

sys.OutputGroup.temperature = [1];

sys.InputGroup.measurement = [3 5];

creates output groups named temperature and measurement that include output
channels 1, and 3, 5, respectively. You can then extract the subsystem from all inputs to
the measurement outputs using:

sys('measurement',:)

Default: Struct with no fields

Name

System name. Set Name to a string to label the system.

Default: ''

Notes

Any text that you want to associate with the system. Set Notes to a string or a cell array
of strings.

Default: {}

UserData

Any type of data you wish to associate with system. Set UserData to any MATLAB data
type.

Default: []

Examples

Create a parametric SISO transfer function with two zeros, four poles, and at least one
integrator.

1 Functions — Alphabetical List

1-440

A transfer function with an integrator includes a factor of 1/s. Therefore, to ensure that
a parametrized transfer function has at least one integrator regardless of the parameter
values, fix the lowest-order coeffiecient of the denominator to zero.

 blk = ltiblock.tf('tfblock',2,4); % two zeros, four poles

 blk.den.Value(end) = 0; % set last denominator entry to zero

 blk.den.Free(end) = 0; % fix it to zero

Create a parametric transfer function, and assign names to the input and output.

blk = ltiblock.tf('tfblock',2,3);

blk.InputName = {'error'}; % assign input name

blk.OutputName = {'control'}; % assign output name

More About

Tips

• To convert an ltiblock.tf parametric model to a numeric (non-tunable) model
object, use model commands such as tf, zpk, or ss.

• “Control Design Blocks”
• “Models with Tunable Coefficients”

See Also
ltiblock.pid | ltiblock.pid2 | ltiblock.ss | ltiblock.tf | genss | systune
| looptune | hinfstruct

 ltiview

1-441

ltiview
LTI Viewer for LTI system response analysis

Syntax

ltiview

ltiview(sys1,sys2,...,sysn)

ltiview(plottype,sys)

ltiview(plottype,sys,extras)

ltiview('clear',viewers)

ltiview('current',sys1,sys2,...,sysn,viewers)

ltiview(plottype,sys1,sys2,...sysN)

ltiview(plottype,sys1,PlotStyle1,sys2,PlotStyle2,...)

ltiview(plottype,sys1,sys2,...sysN,extras)

Description

ltiview when invoked without input arguments, initializes a new LTI Viewer for LTI
system response analysis.

ltiview(sys1,sys2,...,sysn) opens an LTI Viewer containing the step response of
the LTI models sys1,sys2,...,sysn. You can specify a distinctive color, line style, and
marker for each system, as in

sys1 = rss(3,2,2);

sys2 = rss(4,2,2);

ltiview(sys1,'r-*',sys2,'m--');

ltiview(plottype,sys) initializes an LTI Viewer containing the LTI response type
indicated by plottype for the LTI model sys. The string plottype can be any one of
the following:

'step'

'impulse'

'initial'

'lsim'

'pzmap'

'bode'

1 Functions — Alphabetical List

1-442

'nyquist'

'nichols'

'sigma'

or,

plottype can be a cell vector containing up to six of these plot types. For example,

ltiview({'step';'nyquist'},sys)

displays the plots of both of these response types for a given system sys.

ltiview(plottype,sys,extras) allows the additional input arguments supported by
the various LTI model response functions to be passed to the ltiview command.

extras is one or more input arguments as specified by the function named in plottype.
These arguments may be required or optional, depending on the type of LTI response.
For example, if plottype is 'step' then extras may be the desired final time,
Tfinal, as shown below.

ltiview('step',sys,Tfinal)

However, if plottype is 'initial', the extras arguments must contain the initial
conditions x0 and may contain other arguments, such as Tfinal.

ltiview('initial',sys,x0,Tfinal)

See the individual references pages of each possible plottype commands for a list of
appropriate arguments for extras.

ltiview('clear',viewers) clears the plots and data from the LTI Viewers with
handles viewers.

ltiview('current',sys1,sys2,...,sysn,viewers) adds the responses of the
systems sys1,sys2,...,sysn to the LTI Viewers with handles viewers. If these new
systems do not have the same I/O dimensions as those currently in the LTI Viewer, the
LTI Viewer is first cleared and only the new responses are shown.

ltiview(plottype,sys1,sys2,...sysN) initializes an LTI Viewer containing the
responses of multiple LTI models.

ltiview(plottype,sys1,PlotStyle1,sys2,PlotStyle2,...) initializes the
viewer with specified plot styles. See the individual reference pages of the LTI response
functions for more information on specifying plot styles.

 ltiview

1-443

ltiview(plottype,sys1,sys2,...sysN,extras) initializes the viewer for multiple
models using the extras input arguments.

See Also
bode | impulse | lsim | initial | nichols | nyquist | pzmap | sigma | step

Related Examples
• “Linear Analysis Using the LTI Viewer”

1 Functions — Alphabetical List

1-444

lyap
Continuous Lyapunov equation solution

Syntax

lyap

X = lyap(A,Q)

X = lyap(A,B,C)

X = lyap(A,Q,[],E)

Description

lyap solves the special and general forms of the Lyapunov equation. Lyapunov
equations arise in several areas of control, including stability theory and the study of the
RMS behavior of systems.

X = lyap(A,Q) solves the Lyapunov equation

AX XA QT
+ + = 0

where A and Q represent square matrices of identical sizes. If Q is a symmetric matrix,
the solution X is also a symmetric matrix.

X = lyap(A,B,C) solves the Sylvester equation

AX XB C+ + = 0

The matrices A, B, and C must have compatible dimensions but need not be square.

X = lyap(A,Q,[],E) solves the generalized Lyapunov equation

AXE EXA QT T
+ + = 0

where Q is a symmetric matrix. You must use empty square brackets [] for this function.
If you place any values inside the brackets, the function errors out.

 lyap

1-445

Limitations

The continuous Lyapunov equation has a unique solution if the eigenvalues a a a1 2, ,...,
n

of A and b b b1 2, ,...,
n

 of B satisfy

a bi j for all pairs i j+ π 0 (,)

If this condition is violated, lyap produces the error message:

Solution does not exist or is not unique.

Examples

Example 1

Solve Lyapunov Equation

Solve the Lyapunov equation

AX XA QT
+ + = 0

where

A Q=
- -

È

Î
Í

˘

˚
˙ =

È

Î
Í

˘

˚
˙

1 2

3 4

3 1

1 1

The A matrix is stable, and the Q matrix is positive definite.

A = [1 2; -3 -4];

Q = [3 1; 1 1];

X = lyap(A,Q)

These commands return the following X matrix:

X =

 6.1667 -3.8333

 -3.8333 3.0000

1 Functions — Alphabetical List

1-446

You can compute the eigenvalues to see that X is positive definite.

eig(X)

The command returns the following result:

ans =

 0.4359

 8.7308

Example 2

Solve Sylvester Equation

Solve the Sylvester equation

AX XB C+ + = 0

where

A B C= =
È

Î
Í

˘

˚
˙ = []5

4 3

4 3
2 1

A = 5;

B = [4 3; 4 3];

C = [2 1];

X = lyap(A,B,C)

These commands return the following X matrix:

X =

 -0.2000 -0.0500

More About

Algorithms

lyap uses SLICOT routines SB03MD and SG03AD for Lyapunov equations and
SB04MD (SLICOT) and ZTRSYL (LAPACK) for Sylvester equations.

 lyap

1-447

References

[1] Bartels, R.H. and G.W. Stewart, "Solution of the Matrix Equation AX + XB = C,"
Comm. of the ACM, Vol. 15, No. 9, 1972.

[2] Barraud, A.Y., “A numerical algorithm to solve A XA - X = Q,” IEEE Trans. Auto.
Contr., AC-22, pp. 883–885, 1977.

[3] Hammarling, S.J., “Numerical solution of the stable, non-negative definite Lyapunov
equation,” IMA J. Num. Anal., Vol. 2, pp. 303–325, 1982.

[4] Penzl, T., ”Numerical solution of generalized Lyapunov equations,” Advances in
Comp. Math., Vol. 8, pp. 33–48, 1998.

[5] Golub, G.H., Nash, S. and Van Loan, C.F., “A Hessenberg-Schur method for the
problem AX + XB = C,” IEEE Trans. Auto. Contr., AC-24, pp. 909–913, 1979.

See Also
covar | dlyap

1 Functions — Alphabetical List

1-448

lyapchol
Square-root solver for continuous-time Lyapunov equation

Syntax

R = lyapchol(A,B)

X = lyapchol(A,B,E)

Description

R = lyapchol(A,B) computes a Cholesky factorization X = R'*R of the solution X to
the Lyapunov matrix equation:

A*X + X*A' + B*B' = 0

All eigenvalues of matrix A must lie in the open left half-plane for R to exist.

X = lyapchol(A,B,E) computes a Cholesky factorization X = R'*R of X solving the
generalized Lyapunov equation:

A*X*E' + E*X*A' + B*B' = 0

All generalized eigenvalues of (A,E) must lie in the open left half-plane for R to exist.

More About

Algorithms

lyapchol uses SLICOT routines SB03OD and SG03BD.

References

[1] Bartels, R.H. and G.W. Stewart, "Solution of the Matrix Equation AX + XB = C,"
Comm. of the ACM, Vol. 15, No. 9, 1972.

 lyapchol

1-449

[2] Hammarling, S.J., “Numerical solution of the stable, non-negative definite Lyapunov
equation,” IMA J. Num. Anal., Vol. 2, pp. 303-325, 1982.

[3] Penzl, T., ”Numerical solution of generalized Lyapunov equations,” Advances in
Comp. Math., Vol. 8, pp. 33-48, 1998.

See Also
lyap | dlyapchol

1 Functions — Alphabetical List

1-450

mag2db
Convert magnitude to decibels (dB)

Syntax

ydb = mag2db(y)

Description

ydb = mag2db(y) returns the corresponding decibel (dB) value ydb for a given
magnitude y. The relationship between magnitude and decibels is ydb = 20 log10(y).

See Also
db2mag

 margin

1-451

margin

Gain margin, phase margin, and crossover frequencies

Syntax

[Gm,Pm,Wgm,Wpm] = margin(sys)

[Gm,Pm,Wgm,Wpm] = margin(mag,phase,w)

margin(sys)

Description

margin calculates the minimum gain margin, Gm, phase margin, Pm, and associated
frequencies Wgm and Wpm of SISO open-loop models. The gain and phase margin of a
system sys indicates the relative stability of the closed-loop system formed by applying
unit negative feedback to sys, as in the following illustration.

-

sys
+

The gain margin is the amount of gain increase or decrease required to make the loop
gain unity at the frequency Wgm where the phase angle is –180° (modulo 360°). In other
words, the gain margin is 1/g if g is the gain at the –180° phase frequency. Similarly, the
phase margin is the difference between the phase of the response and –180° when the
loop gain is 1.0. The frequency Wpm at which the magnitude is 1.0 is called the unity-gain
frequency or gain crossover frequency. It is generally found that gain margins of three
or more combined with phase margins between 30 and 60 degrees result in reasonable
trade-offs between bandwidth and stability.

[Gm,Pm,Wgm,Wpm] = margin(sys) computes the gain margin Gm, the phase margin
Pm, and the corresponding frequencies Wgm and Wpm, given the SISO open-loop dynamic
system model sys. Wgm is the frequency where the gain margin is measured, which is

1 Functions — Alphabetical List

1-452

a –180 degree phase crossing frequency. Wpm is the frequency where the phase margin
is measured, which is a 0dB gain crossing frequency. These frequencies are expressed
in radians/TimeUnit, where TimeUnit is the unit specified in the TimeUnit property
of sys. When sys has several crossovers, margin returns the smallest gain and phase
margins and corresponding frequencies.

The phase margin Pm is in degrees. The gain margin Gm is an absolute magnitude. You
can compute the gain margin in dB by

Gm_dB = 20*log10(Gm)

[Gm,Pm,Wgm,Wpm] = margin(mag,phase,w) derives the gain and phase margins
from Bode frequency response data (magnitude, phase, and frequency vector). margin
interpolates between the frequency points to estimate the margin values. Provide the
gain data mag in absolute units, and phase data phase in degrees. You can provide the
frequency vector w in any units; margin returns Wgm and Wpm in the same units.

Note: When you use margin(mag,phase,w), margin relies on interpolation to
approximate the margins, which generally produces less accurate results. For example,
if there is no 0 dB crossing within the w range, margin returns a phase margin of
Inf. Therefore, if you have an analytical model sys, using [Gm,Pm,Wgm,Wpm] =
margin(sys) is the most robust way to obtain the margins.

margin(sys), without output arguments, plots the Bode response of sys on the screen
and indicates the gain and phase margins on the plot. By default, gain margins are
expressed in dB on the plot.

Examples

Gain and Phase Margins of Open-Loop Transfer Function

Create an open-loop discrete-time transfer function.

hd = tf([0.04798 0.0464],[1 -1.81 0.9048],0.1)

hd =

 0.04798 z + 0.0464

 margin

1-453

 z^2 - 1.81 z + 0.9048

Sample time: 0.1 seconds

Discrete-time transfer function.

Compute the gain and phase margins.

[Gm,Pm,Wgm,Wpm] = margin(hd)

Gm =

 2.0517

Pm =

 13.5711

Wgm =

 5.4374

Wpm =

 4.3544

Display the gain and phase margins graphically.

margin(hd)

1 Functions — Alphabetical List

1-454

Solid vertical lines mark the gain margin and phase margin. The dashed vertical lines
indicate the locations of Wpm, the frequency where the phase margin is measured, and
Wgm, the frequency where the gain margin is measured.

More About

Algorithms

The phase margin is computed using H∞ theory, and the gain margin by solving
H j H j() ()ω ω= for the frequency ω.

See Also
bode | ltiview

 minreal

1-455

minreal
Minimal realization or pole-zero cancelation

Syntax

sysr = minreal(sys)

sysr = minreal(sys,tol)

[sysr,u] = minreal(sys,tol)

... = minreal(sys,tol,false)

... = minreal(sys,[],false)

Description

sysr = minreal(sys) eliminates uncontrollable or unobservable state in state-space
models, or cancels pole-zero pairs in transfer functions or zero-pole-gain models. The
output sysr has minimal order and the same response characteristics as the original
model sys.

sysr = minreal(sys,tol) specifies the tolerance used for state elimination or pole-
zero cancellation. The default value is tol = sqrt(eps) and increasing this tolerance
forces additional cancellations.

[sysr,u] = minreal(sys,tol) returns, for state-space model sys, an orthogonal
matrix U such that (U*A*U',U*B,C*U') is a Kalman decomposition of (A,B,C)

... = minreal(sys,tol,false) and ... = minreal(sys,[],false) disable the
verbose output of the function. By default, minreal displays a message indicating the
number of states removed from a state-space model sys.

Examples

The commands

g = zpk([],1,1);

h = tf([2 1],[1 0]);

1 Functions — Alphabetical List

1-456

cloop = inv(1+g*h) * g

produce the nonminimal zero-pole-gain model cloop.

cloop =

 s (s-1)

 (s-1) (s^2 + s + 1)

Continuous-time zero/pole/gain model.

To cancel the pole-zero pair at s = 1, type

cloopmin = minreal(cloop)

This command produces the following result.

cloopmin =

 s

 (s^2 + s + 1)

Continuous-time zero/pole/gain model.

More About

Algorithms

Pole-zero cancellation is a straightforward search through the poles and zeros looking
for matches that are within tolerance. Transfer functions are first converted to zero-pole-
gain form.

See Also
balreal | modred | sminreal

 modred

1-457

modred
Model order reduction

Syntax

rsys = modred(sys,elim)

rsys = modred(sys,elim,'method')

Description

rsys = modred(sys,elim) reduces the order of a continuous or discrete state-space
model sys by eliminating the states found in the vector elim. The full state vector X is
partitioned as X = [X1;X2] where X1 is the reduced state vector and X2 is discarded.

elim can be a vector of indices or a logical vector commensurate with X where true
values mark states to be discarded. This function is usually used in conjunction with
balreal. Use balreal to first isolate states with negligible contribution to the I/O
response. If sys has been balanced with balreal and the vector g of Hankel singular
values has M small entries, you can use modred to eliminate the corresponding M states.
For example:
[sys,g] = balreal(sys) % Compute balanced realization

elim = (g<1e-8) % Small entries of g are negligible states

rsys = modred(sys,elim) % Remove negligible states

rsys = modred(sys,elim,'method') also specifies the state elimination method.
Choices for 'method' include

• 'MatchDC' (default): Enforce matching DC gains. The state-space matrices are
recomputed as described in “Algorithms” on page 1-461.

• 'Truncate': Simply delete X2.

The 'Truncate' option tends to produces a better approximation in the frequency
domain, but the DC gains are not guaranteed to match.

If the state-space model sys has been balanced with balreal and the grammians have
m small diagonal entries, you can reduce the model order by eliminating the last m
states with modred.

1 Functions — Alphabetical List

1-458

Examples

Order Reduction by Matched-DC-Gain and Direct-Deletion Methods

Consider the following continuous fourth-order model.

To reduce its order, first compute a balanced state-space realization with balreal.

h = tf([1 11 36 26],[1 14.6 74.96 153.7 99.65]);

[hb,g] = balreal(h);

Examine the gramians.

g'

ans =

 0.1394 0.0095 0.0006 0.0000

The last three diagonal entries of the balanced gramians are relatively small. Eliminate
these three least-contributing states with modred, using both matched-DC-gain and
direct-deletion methods.

hmdc = modred(hb,2:4,'MatchDC');

hdel = modred(hb,2:4,'Truncate');

Both hmdc and hdel are first-order models. Compare their Bode responses against that
of the original model.

bodeplot(h,'-',hmdc,'x',hdel,'*')

 modred

1-459

The reduced-order model hdel is clearly a better frequency-domain approximation of h.
Now compare the step responses.

stepplot(h,'-',hmdc,'-.',hdel,'--')

1 Functions — Alphabetical List

1-460

While hdel accurately reflects the transient behavior, only hmdc gives the true steady-
state response.

Limitations

With the matched DC gain method, A22 must be invertible in continuous time, and I – A22
must be invertible in discrete time.

 modred

1-461

More About

Algorithms

The algorithm for the matched DC gain method is as follows. For continuous-time models

&x Ax By

y Cx Du

= +

= +

the state vector is partitioned into x1, to be kept, and x2, to be eliminated.

&

&

x

x

A A

A A

x

x

B

B
u

y C C

1

2

11 12

21 22

1

2

1

2

1

È

Î
Í

˘

˚
˙ =

È

Î
Í

˘

˚
˙

È

Î
Í

˘

˚
˙ +

È

Î
Í

˘

˚
˙

=
22[] +x Du

Next, the derivative of x2 is set to zero and the resulting equation is solved for x1. The
reduced-order model is given by

&x A A A A x B A A B u

y C C A A

1 11 12 22

1

21 1 1 12 22

1

2

1 2 22
1

2

= − + −

= −

− −

−
11 2 22

1
2

 + −
−x D C A B u

The discrete-time case is treated similarly by setting

x n x n2 21[] []+ =

See Also
balreal | minreal

1 Functions — Alphabetical List

1-462

modsep
Region-based modal decomposition

Syntax

[H,H0] = modsep(G,N,REGIONFCN)

MODSEP(G,N,REGIONFCN,PARAM1,...)

Description

[H,H0] = modsep(G,N,REGIONFCN) decomposes the LTI model G into a sum of n
simpler models Hj with their poles in disjoint regions Rj of the complex plane:

G s H Hj s
j

N
() ()= +

=∑0
1

G can be any LTI model created with ss, tf, or zpk, and N is the number of regions used
in the decomposition. modsep packs the submodels Hj into an LTI array H and returns
the static gain H0 separately. Use H(:,:,j) to retrieve the submodel Hj(s).

To specify the regions of interest, use a function of the form

IR = REGIONFCN(p)

that assigns a region index IR between 1 and N to a given pole p. You can
specify this function as a string or a function handle, and use the syntax
MODSEP(G,N,REGIONFCN,PARAM1,...) to pass extra input arguments:

IR = REGIONFCN(p,PARAM1,...)

Examples

To decompose G into G(z) = H0 + H1(z) + H2(z) where H1 and H2 have their poles
inside and outside the unit disk respectively, use

[H,H0] = modsep(G,2,@udsep)

 modsep

1-463

where the function udsep is defined by

function r = udsep(p)

if abs(p)<1, r = 1; % assign r=1 to poles inside unit disk

else r = 2; % assign r=2 to poles outside unit disk

end

To extract H1(z) and H2(z) from the LTI array H, use

H1 = H(:,:,1); H2 = H(:,:,2);

See Also
stabsep

1 Functions — Alphabetical List

1-464

nblocks
Number of blocks in Generalized matrix or Generalized LTI model

Syntax
N = nblocks(M)

Description
N = nblocks(M) returns the number of “Control Design Blocks” in the “Generalized
LTI model” or “Generalized matrix” M.

Input Arguments
M

A“Generalized LTI model” (genss or genfrd model), a “Generalized matrix” (genmat),
or an array of such models.

Output Arguments
N

The number of “Control Design Blocks” in M. If a block appears multiple times in M, N
reflects the total number of occurrences.

If M is a model array, N is an array with the same dimensions as M. Each entry of N is
the number of Control Design Blocks in the corresponding entry of M.

Examples
Number of Control Design Blocks in a Second-Order Filter Model

This example shows how to use nblocks to examine two different ways of parametrizing
a model of a second-order filter.

 nblocks

1-465

1 Create a tunable (parametric) model of the second-order filter:

F s

s

n

n n

() =
+ +

w

zw w

2

2 2
2

,

where the damping ζ and the natural frequency ωn are tunable parameters.

wn = realp('wn',3);

zeta = realp('zeta',0.8);

F = tf(wn^2,[1 2*zeta*wn wn^2]);

F is a genss model with two tunable Control Design Blocks, the realp blocks wn
and zeta. The blocks wn and zeta have initial values of 3 and 0.8, respectively.

2 Examine the number of tunable blocks in the model using nblocks.

nblocks(F)

This command returns the result:

ans =

 6

F has two tunable parameters, but the parameter wn appears five times—twice in
the numerator and three times in the denominator.

3 Rewrite F for fewer occurrences of wn.

The second-order filter transfer function can be expressed as follows:

F s

s s

n n

() =
Ê

Ë
Á

ˆ

¯
˜ +

Ê

Ë
Á

ˆ

¯
˜ +

1

2 1

2

w
z

w

.

Use this expression to create the tunable filter:

F = tf(1,[(1/wn)^2 2*zeta*(1/wn) 1])

4 Examine the number of tunable blocks in the new filter model.

nblocks(F)

1 Functions — Alphabetical List

1-466

This command returns the result:

ans =

 4

In the new formulation, there are only three occurrences of the tunable parameter
wn. Reducing the number of occurrences of a block in a model can improve
performance time of calculations involving the model. However, the number of
occurrences does not affect the results of tuning the model or sampling the model for
parameter studies.

More About
• “Control Design Blocks”
• “Generalized Matrices”
• “Generalized and Uncertain LTI Models”

See Also
genss | genfrd | genmat | getValue

 ndims

1-467

ndims
Query number of dimensions of dynamic system model or model array

Syntax

n = ndims(sys)

Description

n = ndims(sys) is the number of dimensions of a dynamic system model or a model
array sys. A single model has two dimensions (one for outputs, and one for inputs). A
model array has 2 + p dimensions, where p ≥ 2 is the number of array dimensions. For
example, a 2-by-3-by-4 array of models has 2 + 3 = 5 dimensions.

ndims(sys) = length(size(sys))

Examples
sys = rss(3,1,1,3);

ndims(sys)

ans =

 4

ndims returns 4 for this 3-by-1 array of SISO models.

See Also
size

1 Functions — Alphabetical List

1-468

ngrid
Superimpose Nichols chart on Nichols plot

Syntax

ngrid

Description

ngrid superimposes Nichols chart grid lines over the Nichols frequency response of
a SISO LTI system. The range of the Nichols grid lines is set to encompass the entire
Nichols frequency response.

The chart relates the complex number H/(1 + H) to H, where H is any complex number.
For SISO systems, when H is a point on the open-loop frequency response, then

H

H1 +

is the corresponding value of the closed-loop frequency response assuming unit negative
feedback.

If the current axis is empty, ngrid generates a new Nichols chart grid in the region –
40 dB to 40 dB in magnitude and –360 degrees to 0 degrees in phase. If the current axis
does not contain a SISO Nichols frequency response, ngrid returns a warning.

Examples

Nichols Response with Nichols Grid Lines

Plot the Nichols response with Nichols grid lines for the following system:

 ngrid

1-469

H = tf([-4 48 -18 250 600],[1 30 282 525 60]);

nichols(H)

ngrid

The right-click menu for Nichols charts includes the Tight option under Zoom. You can
use this to clip unbounded branches of the Nichols chart.

See Also
nichols

1 Functions — Alphabetical List

1-470

nichols
Nichols chart of frequency response

Syntax

nichols(sys)

nichols(sys,w)

nichols(sys1,sys2,...,sysN)

nichols(sys1,sys2,...,sysN,w)

nichols(sys1,'PlotStyle1',...,sysN,'PlotStyleN')

[mag,phase,w] = nichols(sys)

[mag,phase] = nichols(sys,w)

Description

nichols creates a Nichols chart of the frequency response. A Nichols chart displays the
magnitude (in dB) plotted against the phase (in degrees) of the system response. Nichols
charts are useful to analyze open- and closed-loop properties of SISO systems, but offer
little insight into MIMO control loops. Use ngrid to superimpose a Nichols chart on an
existing SISO Nichols chart.

nichols(sys) creates a Nichols chart of the “dynamic system” sys. This model can be
continuous or discrete, SISO or MIMO. In the MIMO case, nichols produces an array
of Nichols charts, each plot showing the response of one particular I/O channel. The
frequency range and gridding are determined automatically based on the system poles
and zeros.

nichols(sys,w) specifies the frequency range or frequency points to be used for the
chart. To focus on a particular frequency interval [wmin,wmax], set w = {wmin,wmax}.
To use particular frequency points, set w to the vector of desired frequencies. Use
logspace to generate logarithmically spaced frequency vectors. Frequencies must be
in rad/TimeUnit, where TimeUnit is the time units of the input dynamic system,
specified in the TimeUnit property of sys.

nichols(sys1,sys2,...,sysN) or nichols(sys1,sys2,...,sysN,w)
superimposes the Nichols charts of several models on a single figure. All

 nichols

1-471

systems must have the same number of inputs and outputs, but may otherwise
be a mix of continuous- and discrete-time systems. You can also specify a
distinctive color, linestyle, and/or marker for each system plot with the syntax
nichols(sys1,'PlotStyle1',...,sysN,'PlotStyleN').

See bode for an example.

[mag,phase,w] = nichols(sys) or [mag,phase] = nichols(sys,w) returns the
magnitude and phase (in degrees) of the frequency response at the frequencies w (in rad/
TimeUnit). The outputs mag and phase are 3-D arrays similar to those produced by
bode (see the bode reference page). They have dimensions
(number of outputs) × (number of inputs) × (length of w)

Examples

Nichols Response with Nichols Grid Lines

Plot the Nichols response with Nichols grid lines for the following system:

H = tf([-4 48 -18 250 600],[1 30 282 525 60]);

nichols(H)

ngrid

1 Functions — Alphabetical List

1-472

The right-click menu for Nichols charts includes the Tight option under Zoom. You can
use this to clip unbounded branches of the Nichols chart.

More About

Tips

You can change the properties of your plot, for example the units. For information on the
ways to change properties of your plots, see “Ways to Customize Plots”.

Algorithms

See bode.

 nichols

1-473

See Also
bode | evalfr | freqresp | ltiview | ngrid | nyquist | sigma

1 Functions — Alphabetical List

1-474

nicholsoptions
Create list of Nichols plot options

Syntax

P = nicholsoptions

P = nicholsoptions('cstprefs')

Description

P = nicholsoptions returns a list of available options for Nichols plots with default
values set. You can use these options to customize the Nichols plot appearance from the
command line.

P = nicholsoptions('cstprefs') initializes the plot options with the options you
selected in the Control System Toolbox Preferences Editor. For more information about
the editor, see “Toolbox Preferences Editor” in the User's Guide documentation.

This table summarizes the Nichols plot options.

Option Description

Title, XLabel, YLabel Label text and style
TickLabel Tick label style
Grid Show or hide the grid

Specified as one of the following strings:
'off' | 'on'
Default: 'off'

XlimMode, YlimMode Limit modes
Xlim, Ylim Axes limits
IOGrouping Grouping of input-output pairs

Specified as one of the following strings:
'none' |'inputs'|'output'|'all'
Default: 'none'

InputLabels, OutputLabels Input and output label styles.

 nicholsoptions

1-475

Option Description

InputVisible, OutputVisible Visibility of input and output channels

1 Functions — Alphabetical List

1-476

Option Description

FreqUnits Frequency units, specified as one of the
following strings:

• 'Hz'

• 'rad/second'

• 'rpm'

• 'kHz'

• 'MHz'

• 'GHz'

• 'rad/nanosecond'

• 'rad/microsecond'

• 'rad/millisecond'

• 'rad/minute'

• 'rad/hour'

• 'rad/day'

• 'rad/week'

• 'rad/month'

• 'rad/year'

• 'cycles/nanosecond'

• 'cycles/microsecond'

• 'cycles/millisecond'

• 'cycles/hour'

• 'cycles/day'

• 'cycles/week'

• 'cycles/month'

• 'cycles/year'

Default: 'rad/s'

You can also specify 'auto' which uses
frequency units rad/TimeUnit relative

 nicholsoptions

1-477

Option Description

to system time units specified in the
TimeUnit property. For multiple systems
with different time units, the units of the
first system are used.

MagLowerLimMode Enables a lower magnitude limit
Specified as one of the following strings:
'auto' | 'manual'
Default: 'auto'

MagLowerLim Specifies the lower magnitude limit
PhaseUnits Phase units

Specified as one of the following strings:
'deg' | 'rad'
Default: 'deg'

PhaseWrapping Enables phase wrapping
Specified as one of the following strings:
'on' | 'off'
Default: 'off'

PhaseMatching Enables phase matching
Specified as one of the following strings:
'on' | 'off'
Default: 'off'

PhaseMatchingFreq Frequency for matching phase
PhaseMatchingValue The value to make the phase responses

close to

Examples

Set Options for Nichols Plot

Create an options set, and set the phase units and grid option.

P = nicholsoptions;

P.PhaseUnits = 'rad';

P.Grid = 'on';

Use the options set to generate a Nichols plot. Not the phase units and grid in the plot.

1 Functions — Alphabetical List

1-478

h = nicholsplot(tf(1,[1,.2,1,0]),P);

See Also
getoptions | nicholsplot | setoptions

 nicholsplot

1-479

nicholsplot
Plot Nichols frequency responses and return plot handle

Syntax

h = nicholsplot(sys)

nicholsplot(sys,{wmin,wmax})

nicholsplot(sys,w)

nicholsplot(sys1,sys2,...,w)

nicholsplot(AX,...)

nicholsplot(..., plotoptions)

Description

h = nicholsplot(sys) draws the Nichols plot of the “dynamic system” sys. It
also returns the plot handle h. You can use this handle to customize the plot with the
getoptions and setoptions commands. Type

help nicholsoptions

for a list of available plot options.

The frequency range and number of points are chosen automatically. See bode for details
on the notion of frequency in discrete time.

nicholsplot(sys,{wmin,wmax}) draws the Nichols plot for frequencies between
wmin and wmax (in rad/TimeUnit, where TimeUnit is the time units of the input
dynamic system, specified in the TimeUnit property of sys).

nicholsplot(sys,w) uses the user-supplied vector w of frequencies, in rad/
TimeUnit, at which the Nichols response is to be evaluated. See logspace to generate
logarithmically spaced frequency vectors.

nicholsplot(sys1,sys2,...,w) draws the Nichols plots of multiple models
sys1,sys2,... on a single plot. The frequency vector w is optional. You can also specify a
color, line style, and marker for each system, as in

nicholsplot(sys1,'r',sys2,'y--',sys3,'gx').

1 Functions — Alphabetical List

1-480

nicholsplot(AX,...) plots into the axes with handle AX.

nicholsplot(..., plotoptions) plots the Nichols plot with the options specified in
plotoptions. Type

help nicholsoptions

for more details.

Examples

Generate Nichols plot and use plot handle to change frequency units to Hz

sys = rss(5);

h = nicholsplot(sys);

% Change units to Hz

setoptions(h,'FreqUnits','Hz');

More About

Tips

You can change the properties of your plot, for example the units. For information on the
ways to change properties of your plots, see “Ways to Customize Plots”.

See Also
getoptions | nichols | nicholsoptions | setoptions

 nmodels

1-481

nmodels

Number of models in model array

Syntax

N = nmodels(sysarray)

Description

N = nmodels(sysarray) returns the number of models in an array of dynamic system
models or static models.

Examples

Number of Models in Array

Create a 2-by-3-by-5 array of state-space models and confirm the number of models in the
array.

sysarr = rss(2,2,2,2,3,4);

N = nmodels(sysarr)

N =

 24

Input Arguments

sysarray — Input model array
model array

Input model array, specified as an array of input-output models such as numeric LTI
models, generalized models, or identified LTI models.

1 Functions — Alphabetical List

1-482

Output Arguments

N — Number of models in array
positive integer

Number of models in the input model array, returned as a positive integer.

See Also
ndims | size

 norm

1-483

norm
Norm of linear model

Syntax

n = norm(sys)

n = norm(sys,2)

n = norm(sys,inf)

[n,fpeak] = norm(sys,inf)

[...] = norm(sys,inf,tol)

Description

n = norm(sys) or n = norm(sys,2) return the H2 norm of the linear dynamic system
model sys.

n = norm(sys,inf) returns the H∞ norm of sys.

[n,fpeak] = norm(sys,inf) also returns the frequency fpeak at which the gain
reaches its peak value.

[...] = norm(sys,inf,tol) sets the relative accuracy of the H∞ norm to tol.

Input Arguments

sys

Continuous- or discrete-time linear dynamic system model. sys can also be an array of
linear models.

tol

Positive real value setting the relative accuracy of the H∞ norm.

Default: 0.01

1 Functions — Alphabetical List

1-484

Output Arguments

n

H2 norm or H∞ norm of the linear model sys.

If sys is an array of linear models, n is an array of the same size as sys. In that case each
entry of n is the norm of each entry of sys.

fpeak

Frequency at which the peak gain of sys occurs.

Examples

This example uses norm to compute the H2 and H∞ norms of a discrete-time linear
system.

Consider the discrete-time transfer function

H z
z z z

z z z

()
. . .

. . .
= − + −

− + −

3 2

3 2

2 841 2 875 1 004

2 417 2 003 0 5488

with sample time 0.1 second.

To compute the H2 norm of this transfer function, enter:

H = tf([1 -2.841 2.875 -1.004],[1 -2.417 2.003 -0.5488],0.1)

norm(H)

These commands return the result:

ans =

 1.2438

To compute the H∞ infinity norm, enter:

[ninf,fpeak] = norm(H,inf)

This command returns the result:

ninf =

 norm

1-485

 2.5488

fpeak =

 3.0844

You can use a Bode plot of H(z) to confirm these values.

bode(H)

grid on;

The gain indeed peaks at approximately 3 rad/sec. To find the peak gain in dB, enter:

20*log10(ninf)

This command produces the following result:

1 Functions — Alphabetical List

1-486

ans =

 8.1268

More About

H2 norm

The H2 norm of a stable continuous-time system with transfer function H(s), is given by:

H H j H j dH
2

1

2
= È

Î
˘
˚-•

•

Úp
w w wTrace () () .

For a discrete-time system with transfer function H(z), the H2 norm is given by:

H H e H e dj H j
2

1

2
= È

Î
˘
˚-Úp

ww w

p

p
Trace () () .

The H2 norm is equal to the root-mean-square of the impulse response of the system. The
H2 norm measures the steady-state covariance (or power) of the output response y = Hw
to unit white noise inputs w:

H E y t y t E w t w t I
t

T T
2
2

= { } () = -()
Æ•

lim () () , () () . t d t

The H2 norm is infinite in the following cases:

• sys is unstable.
• sys is continuous and has a nonzero feedthrough (that is, nonzero gain at the

frequency ω = ∞).

norm(sys) produces the same result as

sqrt(trace(covar(sys,1)))

H-infinity norm

The H∞ norm (also called the L∞ norm) of a SISO linear system is the peak gain of the
frequency response. For a MIMO system, the H∞ norm is the peak gain across all input/
output channels. Thus, for a continuous-time system H(s), the H∞ norm is given by:

 norm

1-487

H s H j

H s H j

() = ()

() = (

•

•

max)

max max

w

w

w

s w

 (SISO

))() (MIMO)

where σmax(·) denotes the largest singular value of a matrix.

For a discrete-time system H(z):

H z H e

H z

j() = ()

() =

• Œ[]

• Œ

max)

max

,q p

q

q

0
 (SISO

00,
max)

p

qs
[]

()()H e j (MIMO

The H∞ norm is infinite if sys has poles on the imaginary axis (in continuous time), or on
the unit circle (in discrete time).

Algorithms

norm first converts sys to a state space model.

norm uses the same algorithm as covar for the H2 norm. For the H∞ norm, norm uses
the algorithm of [1]. norm computes the H∞ norm (peak gain) using the SLICOT library.
For more information about the SLICOT library, see http://slicot.org.

References

[1] Bruisma, N.A. and M. Steinbuch, "A Fast Algorithm to Compute the H∞-Norm of a
Transfer Function Matrix," System Control Letters, 14 (1990), pp. 287-293.

See Also
freqresp | sigma

http://slicot.org

1 Functions — Alphabetical List

1-488

nyquist
Nyquist plot of frequency response

Syntax

nyquist(sys)

nyquist(sys,w)

nyquist(sys1,sys2,...,sysN)

nyquist(sys1,sys2,...,sysN,w)

nyquist(sys1,'PlotStyle1',...,sysN,'PlotStyleN')

[re,im,w] = nyquist(sys)

[re,im] = nyquist(sys,w)

[re,im,w,sdre,sdim] = nyquist(sys)

Description

nyquist creates a Nyquist plot of the frequency response of a “dynamic system model”.
When invoked without left-hand arguments, nyquist produces a Nyquist plot on the
screen. Nyquist plots are used to analyze system properties including gain margin, phase
margin, and stability.

nyquist(sys) creates a Nyquist plot of a dynamic system sys. This model can be
continuous or discrete, and SISO or MIMO. In the MIMO case, nyquist produces an
array of Nyquist plots, each plot showing the response of one particular I/O channel. The
frequency points are chosen automatically based on the system poles and zeros.

nyquist(sys,w) explicitly specifies the frequency range or frequency points to be used
for the plot. To focus on a particular frequency interval, set w = {wmin,wmax}. To use
particular frequency points, set w to the vector of desired frequencies. Use logspace
to generate logarithmically spaced frequency vectors. Frequencies must be in rad/
TimeUnit, where TimeUnit is the time units of the input dynamic system, specified in
the TimeUnit property of sys.

nyquist(sys1,sys2,...,sysN) or nyquist(sys1,sys2,...,sysN,w)
superimposes the Nyquist plots of several LTI models on a single figure. All
systems must have the same number of inputs and outputs, but may otherwise
be a mix of continuous- and discrete-time systems. You can also specify a

 nyquist

1-489

distinctive color, linestyle, and/or marker for each system plot with the syntax
nyquist(sys1,'PlotStyle1',...,sysN,'PlotStyleN').

[re,im,w] = nyquist(sys) and [re,im] = nyquist(sys,w) return the real and
imaginary parts of the frequency response at the frequencies w (in rad/TimeUnit). re
and im are 3-D arrays (see "Arguments" below for details).

[re,im,w,sdre,sdim] = nyquist(sys) also returns the standard deviations of re
and im for the identified system sys.

Arguments
The output arguments re and im are 3-D arrays with dimensions

(number of outputs) (number of inputs) (length of w)× ×

For SISO systems, the scalars re(1,1,k) and im(1,1,k) are the real and imaginary
parts of the response at the frequency ωk = w(k).

re

im

(, ,) Re ()

(, ,) Im ()

1 1

1 1

k h j

k h jw

k

k

= ()
= ()

ω

For MIMO systems with transfer function H(s), re(:,:,k) and im(:,:,k) give the real
and imaginary parts of H(jωk) (both arrays with as many rows as outputs and as many
columns as inputs). Thus,

re(i, j,k)

im(i, j, k)

= ()
= ()
Re ()

Im ()

h j

h j

ij k

ij k

ω

ω

where hij is the transfer function from input j to output i.

Examples

Nyquist Plot of Dynamic System

Plot the Nyquist response of the system

1 Functions — Alphabetical List

1-490

H s
s s

s s

() = + +
+ +

2 5 1

2 3

2

2

H = tf([2 5 1],[1 2 3]);

nyquist(H)

The nyquist function has support for M-circles, which are the contours of the constant
closed-loop magnitude. M-circles are defined as the locus of complex numbers where

T j
G j

G j
()

()

()
ω

ω
ω

=
+1

 nyquist

1-491

is a constant value. In this equation, ω is the frequency in radians/TimeUnit, where
TimeUnit is the system time units, and G is the collection of complex numbers that
satisfy the constant magnitude requirement.

To activate the grid, select Grid from the right-click menu or type

grid

at the MATLAB prompt. This figure shows the M circles for transfer function H.

You have two zoom options available from the right-click menu that apply specifically to
Nyquist plots:

• Tight —Clips unbounded branches of the Nyquist plot, but still includes the critical
point (-1, 0)

1 Functions — Alphabetical List

1-492

• On (-1,0) — Zooms around the critical point (-1,0)

Also, click anywhere on the curve to activate data markers that display the real and
imaginary values at a given frequency. This figure shows the nyquist plot with a data
marker.

Nyquist Plot of Identified Model with Response Uncertainty

Compute the standard deviation of the real and imaginary parts of frequency response
of an identified model. Use this data to create a 3σ plot of the response uncertainty.
(Identified models require System Identification Toolbox.)

 nyquist

1-493

Identify a transfer function model based on data. Obtain the standard deviation data for
the real and imaginary parts of the frequency response.

load iddata2 z2;

sys_p = tfest(z2,2);

w = linspace(-10*pi,10*pi,512);

[re, im, ~, sdre, sdim] = nyquist(sys_p,w);

sys_p is an identified transfer function model. sdre and sdim contain 1-std standard
deviation uncertainty values in re and im respectively.

Create a Nyquist plot showing the response and its 3σ uncertainty:
re = squeeze(re);

im = squeeze(im);

sdre = squeeze(sdre);

sdim = squeeze(sdim);

plot(re,im,'b', re+3*sdre, im+3*sdim, 'k:', re-3*sdre, im-3*sdim, 'k:')

More About

Tips

You can change the properties of your plot, for example the units. For information on the
ways to change properties of your plots, see “Ways to Customize Plots”.

Algorithms

See bode.

See Also
evalfr | freqresp | bode | ltiview | nichols | sigma

1 Functions — Alphabetical List

1-494

nyquistoptions
List of Nyquist plot options

Syntax

P = nyquistoptions

P = nyquistoptions('cstprefs')

Description

P = nyquistoptions returns the default options for Nyquist plots. You can use these
options to customize the Nyquist plot appearance using the command line.

P = nyquistoptions('cstprefs') initializes the plot options with the options you
selected in the Control System Toolbox Preferences Editor. For more information about
the editor, see “Toolbox Preferences Editor” in the User's Guide documentation.

The following table summarizes the Nyquist plot options.

Option Description

Title, XLabel, YLabel Label text and style
TickLabel Tick label style
Grid Show or hide the grid

Specified as one of the following strings: 'off' | 'on'
Default: 'off'

XlimMode, YlimMode Limit modes
Xlim, Ylim Axes limits
IOGrouping Grouping of input-output pairs

Specified as one of the following strings: 'none'
|'inputs'|'output'|'all'
Default: 'none'

InputLabels,
OutputLabels

Input and output label styles

 nyquistoptions

1-495

Option Description

InputVisible,
OutputVisible

Visibility of input and output channels

1 Functions — Alphabetical List

1-496

Option Description

FreqUnits Frequency units, specified as one of the following strings:

• 'Hz'

• 'rad/second'

• 'rpm'

• 'kHz'

• 'MHz'

• 'GHz'

• 'rad/nanosecond'

• 'rad/microsecond'

• 'rad/millisecond'

• 'rad/minute'

• 'rad/hour'

• 'rad/day'

• 'rad/week'

• 'rad/month'

• 'rad/year'

• 'cycles/nanosecond'

• 'cycles/microsecond'

• 'cycles/millisecond'

• 'cycles/hour'

• 'cycles/day'

• 'cycles/week'

• 'cycles/month'

• 'cycles/year'

Default: 'rad/s'

You can also specify 'auto' which uses frequency units rad/TimeUnit
relative to system time units specified in the TimeUnit property. For

 nyquistoptions

1-497

Option Description

multiple systems with different time units, the units of the first system
are used.

MagUnits Magnitude units
Specified as one of the following strings: 'dB' | 'abs'
Default: 'dB'

PhaseUnits Phase units
Specified as one of the following strings: 'deg' | 'rad'
Default: 'deg'

ShowFullContour Show response for negative frequencies
Specified as one of the following strings: 'on' | 'off'
Default: 'on'

ConfidenceRegionNumberSDNumber of standard deviations to use to plotting the response confidence
region (identified models only).
Default: 1.

ConfidenceRegionDisplaySpacingThe frequency spacing of confidence ellipses. For identified models only.
Default: 5, which means the confidence ellipses are shown at every 5th
frequency sample.

Examples

This example shows how to create a Nyquist plot displaying the full contour (the
response for both positive and negative frequencies).

P = nyquistoptions;

P.ShowFullContour = 'on';

h = nyquistplot(tf(1,[1,.2,1]),P);

See Also
nyquist | nyquistplot | getoptions | setoptions

1 Functions — Alphabetical List

1-498

nyquistplot
Nyquist plot with additional plot customization options

Syntax

h = nyquistplot(sys)

nyquistplot(sys,{wmin,wmax})

nyquistplot(sys,w)

nyquistplot(sys1,sys2,...,w)

nyquistplot(AX,...)

nyquistplot(..., plotoptions)

Description

h = nyquistplot(sys) draws the Nyquist plot of the “dynamic system model” sys.
It also returns the plot handle h. You can use this handle to customize the plot with the
getoptions and setoptions commands. Type

help nyquistoptions

for a list of available plot options.

The frequency range and number of points are chosen automatically. See bode for details
on the notion of frequency in discrete time.

nyquistplot(sys,{wmin,wmax}) draws the Nyquist plot for frequencies between
wmin and wmax (in rad/TimeUnit, where TimeUnit is the time units of the input
dynamic system, specified in the TimeUnit property of sys).

nyquistplot(sys,w) uses the user-supplied vector w of frequencies (in rad/
TimeUnit, where TimeUnit is the time units of the input dynamic system, specified
in the TimeUnit property of sys) at which the Nyquist response is to be evaluated. See
logspace to generate logarithmically spaced frequency vectors.

nyquistplot(sys1,sys2,...,w) draws the Nyquist plots of multiple models
sys1,sys2,... on a single plot. The frequency vector w is optional. You can also specify a
color, line style, and marker for each system, as in

 nyquistplot

1-499

nyquistplot(sys1,'r',sys2,'y--',sys3,'gx')

nyquistplot(AX,...) plots into the axes with handle AX.

nyquistplot(..., plotoptions) plots the Nyquist response with the options
specified in plotoptions. Type

help nyquistoptions

for more details.

Examples

Example 1

Customize Nyquist Plot Frequency Units

Plot the Nyquist frequency response and change the units to rad/s.

sys = rss(5);

h = nyquistplot(sys);

% Change units to radians per second.

setoptions(h,'FreqUnits','rad/s');

Example 2

Compare the frequency responses of identified state-space models of order 2 and 6 along
with their 1-std confidence regions rendered at every 50th frequency sample.

load iddata1

sys1 = n4sid(z1, 2) % discrete-time IDSS model of order 2

sys2 = n4sid(z1, 6) % discrete-time IDSS model of order 6

Both models produce about 76% fit to data. However, sys2 shows higher uncertainty in
its frequency response, especially close to Nyquist frequency as shown by the plot:
w = linspace(10,10*pi,256);

h = nyquistplot(sys1,sys2,w);

setoptions(h,'ConfidenceRegionDisplaySpacing',50,'ShowFullContour','off');

Right-click to turn on the confidence region characteristic by using the Characteristics-
> Confidence Region.

1 Functions — Alphabetical List

1-500

More About

Tips

You can change the properties of your plot, for example the units. For information on the
ways to change properties of your plots, see “Ways to Customize Plots”.

See Also
nyquist | setoptions | getoptions

 obsv

1-501

obsv
Observability matrix

Syntax

obsv(A,C)

Ob = obsv(sys)

Description

obsv computes the observability matrix for state-space systems. For an n-by-n matrix A
and a p-by-n matrix C, obsv(A,C) returns the observability matrix

Ob

C

CA

CA

CA
n

=

−

2

1

 :

with n columns and np rows.

Ob = obsv(sys) calculates the observability matrix of the state-space model sys. This
syntax is equivalent to executing

Ob = obsv(sys.A,sys.C)

The model is observable if Ob has full rank n.

Examples

Determine if the pair

A =

 1 1

1 Functions — Alphabetical List

1-502

 4 -2

C =

 1 0

 0 1

is observable. Type

Ob = obsv(A,C);

% Number of unobservable states

unob = length(A)-rank(Ob)

These commands produce the following result.

unob =

 0

More About

Tips

obsv is here for educational purposes and is not recommended for serious control design.
Computing the rank of the observability matrix is not recommended for observability
testing. Ob will be numerically singular for most systems with more than a handful of
states. This fact is well documented in the control literature. For example, see section III
in http://lawww.epfl.ch/webdav/site/la/users/105941/public/NumCompCtrl.pdf

See Also
obsvf

http://lawww.epfl.ch/webdav/site/la/users/105941/public/NumCompCtrl.pdf

 obsvf

1-503

obsvf
Compute observability staircase form

Syntax

[Abar,Bbar,Cbar,T,k] = obsvf(A,B,C)

obsvf(A,B,C,tol)

Description

If the observability matrix of (A,C) has rank r ≤ n, where n is the size of A, then there
exists a similarity transformation such that

A TAT B TB C CT
T T= = =, ,

where T is unitary and the transformed system has a staircase form with the
unobservable modes, if any, in the upper left corner.

A
A A

A
B

B

B
C C

no

o

no

o
o=

 =

 = []12

0
0, ,

where (Co, Ao) is observable, and the eigenvalues of Ano are the unobservable modes.

[Abar,Bbar,Cbar,T,k] = obsvf(A,B,C) decomposes the state-space system with
matrices A, B, and C into the observability staircase form Abar, Bbar, and Cbar, as
described above. T is the similarity transformation matrix and k is a vector of length
n, where n is the number of states in A. Each entry of k represents the number of
observable states factored out during each step of the transformation matrix calculation
[1]. The number of nonzero elements in k indicates how many iterations were necessary
to calculate T, and sum(k) is the number of states in Ao, the observable portion of Abar.

obsvf(A,B,C,tol) uses the tolerance tol when calculating the observable/
unobservable subspaces. When the tolerance is not specified, it defaults to
10*n*norm(a,1)*eps.

1 Functions — Alphabetical List

1-504

Examples

Form the observability staircase form of

A =

 1 1

 4 -2

B =

 1 -1

 1 -1

C =

 1 0

 0 1

by typing

[Abar,Bbar,Cbar,T,k] = obsvf(A,B,C)

Abar =

 1 1

 4 -2

Bbar =

 1 1

 1 -1

Cbar =

 1 0

 0 1

T =

 1 0

 0 1

k =

 2 0

More About

Algorithms

obsvf implements the Staircase Algorithm of [1] by calling ctrbf and using duality.

 obsvf

1-505

References

[1] Rosenbrock, M.M., State-Space and Multivariable Theory, John Wiley, 1970.

See Also
ctrbf | obsv

1 Functions — Alphabetical List

1-506

ord2
Generate continuous second-order systems

Syntax

[A,B,C,D] = ord2(wn,z)

[num,den] = ord2(wn,z)

Description

[A,B,C,D] = ord2(wn,z) generates the state-space description (A,B,C,D) of the
second-order system

h s

s sn n

() =
+ +

1

2
2 2ζω ω

given the natural frequency wn (ωn) and damping factor z (ζ). Use ss to turn this
description into a state-space object.

[num,den] = ord2(wn,z) returns the numerator and denominator of the second-
order transfer function. Use tf to form the corresponding transfer function object.

Examples

To generate an LTI model of the second-order transfer function with damping factor ζ =
0.4 and natural frequency ωn = 2.4 rad/sec., type

[num,den] = ord2(2.4,0.4)

num =

 1

den =

 1.0000 1.9200 5.7600

sys = tf(num,den)

Transfer function:

 1

 ord2

1-507

s^2 + 1.92 s + 5.76

See Also
rss | ss | tf

1 Functions — Alphabetical List

1-508

order

Query model order

Syntax

NS = order(sys)

Description

NS = order(sys) returns the model order NS. The order of a dynamic system model
is the number of poles (for proper transfer functions) or the number of states (for state-
space models). For improper transfer functions, the order is defined as the minimum
number of states needed to build an equivalent state-space model (ignoring pole/zero
cancellations).

order(sys) is an overloaded method that accepts SS, TF, and ZPK models. For LTI
arrays, NS is an array of the same size listing the orders of each model in sys.

Caveat

order does not attempt to find minimal realizations of MIMO systems. For example,
consider this 2-by-2 MIMO system:

s=tf('s');

h = [1, 1/(s*(s+1)); 1/(s+2), 1/(s*(s+1)*(s+2))];

order(h)

ans =

 6

Although h has a 3rd order realization, order returns 6. Use

order(ss(h,'min'))

to find the minimal realization order.

 order

1-509

See Also
pole | balred

1 Functions — Alphabetical List

1-510

pade

Padé approximation of model with time delays

Syntax

[num,den] = pade(T,N)

pade(T,N)

sysx = pade(sys,N)

sysx = pade(sys,NU,NY,NINT)

Description

pade approximates time delays by rational models. Such approximations are useful to
model time delay effects such as transport and computation delays within the context of
continuous-time systems. The Laplace transform of a time delay of T seconds is exp(–sT).
This exponential transfer function is approximated by a rational transfer function using
Padé approximation formulas [1].

[num,den] = pade(T,N) returns the Padé approximation of order N of the
continuous-time I/O delay exp(–sT) in transfer function form. The row vectors num and
den contain the numerator and denominator coefficients in descending powers of s. Both
are Nth-order polynomials.

When invoked without output arguments, pade(T,N) plots the step and phase responses
of the Nth-order Padé approximation and compares them with the exact responses
of the model with I/O delay T. Note that the Padé approximation has unit gain at all
frequencies.

sysx = pade(sys,N) produces a delay-free approximation sysx of the continuous
delay system sys. All delays are replaced by their Nth-order Padé approximation. See
“Models with Time Delays” for more information about models with time delays.

sysx = pade(sys,NU,NY,NINT) specifies independent approximation orders for each
input, output, and I/O or internal delay. Here NU, NY, and NINT are integer arrays such
that

 pade

1-511

• NU is the vector of approximation orders for the input channel
• NY is the vector of approximation orders for the output channel
• NINT is the approximation order for I/O delays (TF or ZPK models) or internal delays

(state-space models)

You can use scalar values for NU, NY, or NINT to specify a uniform approximation order.
You can also set some entries of NU, NY, or NINT to Inf to prevent approximation of the
corresponding delays.

Examples

Third-Order Padé Approximation

Compute a third-order Padé approximation of a 0.1-second I/O delay.

s = tf('s');

sys = exp(-0.1*s);

sysx = pade(sys,3)

sysx =

 -s^3 + 120 s^2 - 6000 s + 1.2e05

 s^3 + 120 s^2 + 6000 s + 1.2e05

Continuous-time transfer function.

Here, sys is a dynamic system representation of the exact time delay of 0.l s. sysx is a
transfer function that approximates that delay.

Compare the time and frequency responses of the true delay and its approximation.
Calling the pade command without output arguments generates the comparison plots. In
this case the first argument to pade is just the magnitude of the exact time delay, rather
than a dynamic system representing the time delay.

pade(0.1,3)

1 Functions — Alphabetical List

1-512

Limitations

High-order Padé approximations produce transfer functions with clustered poles.
Because such pole configurations tend to be very sensitive to perturbations, Padé
approximations with order N>10 should be avoided.

More About
• “Time-Delay Approximation”

 pade

1-513

References

[1] Golub, G. H. and C. F. Van Loan, Matrix Computations, Johns Hopkins University
Press, Baltimore, 1989, pp. 557-558.

See Also
c2d | absorbDelay | thiran

1 Functions — Alphabetical List

1-514

parallel

Parallel connection of two models

Syntax

parallel

sys = parallel(sys1,sys2)

sys = parallel(sys1,sys2,inp1,inp2,out1,out2)

sys = parallel(sys1,sys2,'name')

Description

parallel connects two model objects in parallel. This function accepts any type of
model. The two systems must be either both continuous or both discrete with identical
sample time. Static gains are neutral and can be specified as regular matrices.

sys = parallel(sys1,sys2) forms the basic parallel connection shown in the
following figure.

This command equals the direct addition

sys = sys1 + sys2

 parallel

1-515

sys = parallel(sys1,sys2,inp1,inp2,out1,out2) forms the more general
parallel connection shown in the following figure.

The vectors inp1 and inp2 contain indexes into the input channels of sys1 and sys2,
respectively, and define the input channels u1 and u2 in the diagram. Similarly, the
vectors out1 and out2 contain indexes into the outputs of these two systems and define
the output channels y1 and y2 in the diagram. The resulting model sys has [v1 ; u ; v2] as
inputs and [z1 ; y ; z2] as outputs.

sys = parallel(sys1,sys2,'name') connects sys1 and sys2 by matching I/O
names. You must specify all I/O names of sys1 and sys2. The matching names appear in
sys in the same order as in sys1. For example, the following specification:

sys1 = ss(eye(3),'InputName',{'C','B','A'},'OutputName',{'Z','Y','X'});

sys2 = ss(eye(3),'InputName',{'A','C','B'},'OutputName',{'X','Y','Z'});

parallel(sys1,sys2,'name')

returns this result:

d =

 C B A

 Z 1 1 0

 Y 1 1 0

 X 0 0 2

Static gain.

1 Functions — Alphabetical List

1-516

Note: If sys1 and sys2 are model arrays, parallel returns model array sys of the same
size, where sys(:,:,k)=parallel(sys1(:,:,k),sys2(:,:,k),inp1,...).

Examples

See “Kalman Filtering” for an example.

See Also
append | feedback | series

 permute

1-517

permute
Permute array dimensions in model arrays

Syntax

newarray = permute(sysarray,order)

Description

newarray = permute(sysarray,order) rearranges the array dimensions of a model
array so that the dimensions are in the specified order. The input and output dimensions
of the model array are not counted as array dimensions for this operation.

Examples

Permute Model Array Dimensions

Create a 1-by-2-by-3 array of state-space models and rearrange it so that its dimensions
are 3-by-2-by-1.

sysarr = rss(2,2,2,1,2,3);

newarr = permute(sysarr,[3 2 1]);

size(newarr)

3x2 array of state-space models.

Each model has 2 outputs, 2 inputs, and 2 states.

The input and output dimensions of the model array remain unchanged.

Input Arguments

sysarray — Model array to rearrange
model array

Model array to rearrange, specified as an array of input-output models such as numeric
LTI models, generalized models, or identified LTI models.

1 Functions — Alphabetical List

1-518

order — Dimensions of rearranged model array
vector

Dimensions of rearranged model array, specified as a vector of positive integers. For
example, to rearrange a model array into a 3-by-2 array, order is [3 2].

Data Types: double

Output Arguments

newarray — Rearranged model array
model array

Rearranged model array, returned as an array of input-output models with the new
dimensions as specified in order.

See Also
ndims | reshape | size

 pid

1-519

pid
Create PID controller in parallel form, convert to parallel-form PID controller

Syntax

C = pid(Kp,Ki,Kd,Tf)

C = pid(Kp,Ki,Kd,Tf,Ts)

C = pid(sys)

C = pid(Kp)

C = pid(Kp,Ki)

C = pid(Kp,Ki,Kd)

C = pid(...,Name,Value)

C = pid

Description

C = pid(Kp,Ki,Kd,Tf) creates a continuous-time PID controller with proportional,
integral, and derivative gains Kp, Ki, and Kd and first-order derivative filter time
constant Tf:

C K
K

s

K s

T s
p

i d

f

= + +

+1
.

This representation is in parallel form. If all of Kp, Ki, Kd, and Tf are real, then the
resulting C is a pid controller object. If one or more of these coefficients is tunable
(realp or genmat), then C is a tunable generalized state-space (genss) model object.

C = pid(Kp,Ki,Kd,Tf,Ts) creates a discrete-time PID controller with sampling time
Ts. The controller is:

C K K IF z
K

T DF z
p i

d

f

= + () +
+ ()

.

IF(z) and DF(z) are the discrete integrator formulas for the integrator and derivative
filter. By default, IF(z) = DF(z) = Tsz/(z – 1). To choose different discrete integrator

1 Functions — Alphabetical List

1-520

formulas, use the IFormula and DFormula properties. (See “Properties” on page 1-523
for more information about IFormula and DFormula). If DFormula = 'ForwardEuler'
(the default value) and Tf ≠ 0, then Ts and Tf must satisfy Tf > Ts/2. This requirement
ensures a stable derivative filter pole.

C = pid(sys) converts the dynamic system sys to a parallel form pid controller object.

C = pid(Kp) creates a continuous-time proportional (P) controller with Ki = 0, Kd = 0,
and Tf = 0.

C = pid(Kp,Ki) creates a proportional and integral (PI) controller with Kd = 0 and
Tf = 0.

C = pid(Kp,Ki,Kd) creates a proportional, integral, and derivative (PID) controller
with Tf = 0.

C = pid(...,Name,Value) creates a controller or converts a dynamic system to a
pid controller object with additional options specified by one or more Name,Value pair
arguments.

C = pid creates a P controller with Kp = 1.

Input Arguments

Kp

Proportional gain.

Kp can be:

• A real and finite value.
• An array of real and finite values.
• A tunable parameter (realp).
• A tunable generalized matrix (genmat), such as a gain surface for gain-scheduled

tuning, created using gainsurf (requires Robust Control Toolbox software).

When Kp = 0, the controller has no proportional action.

Default: 1

 pid

1-521

Ki

Integral gain.

Ki can be:

• A real and finite value.
• An array of real and finite values.
• A tunable parameter (realp).
• A tunable generalized matrix (genmat), such as a gain surface for gain-scheduled

tuning, created using gainsurf (requires Robust Control Toolbox software).

When Ki = 0, the controller has no integral action.

Default: 0

Kd

Derivative gain.

Kd can be:

• A real and finite value.
• An array of real and finite values.
• A tunable parameter (realp).
• A tunable generalized matrix (genmat), such as a gain surface for gain-scheduled

tuning, created using gainsurf (requires Robust Control Toolbox software).

When Kd = 0, the controller has no derivative action.

Default: 0

Tf

Time constant of the first-order derivative filter.

Tf can be:

• A real, finite, and nonnegative value.

1 Functions — Alphabetical List

1-522

• An array of real, finite, and nonnegative values.
• A tunable parameter (realp).
• A tunable generalized matrix (genmat), such as a gain surface for gain-scheduled

tuning, created using gainsurf (requires Robust Control Toolbox software).

When Tf = 0, the controller has no filter on the derivative action.

Default: 0

Ts

Sampling time.

To create a discrete-time pid controller, provide a positive real value (Ts > 0). pid does
not support discrete-time controller with undetermined sample time (Ts = -1).

Ts must be a scalar value. In an array of pid controllers, each controller must have the
same Ts.

sys

SISO dynamic system to convert to parallel pid form.

sys must represent a valid PID controller that can be written in parallel form with
Tf ≥ 0.

sys can also be an array of SISO dynamic systems.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

Use Name,Value syntax to set the numerical integration formulas IFormula and
DFormula of a discrete-time pid controller, or to set other object properties such
as InputName and OutputName. For information about available properties of pid
controller objects, see “Properties” on page 1-523.

 pid

1-523

Output Arguments

C

PID controller, represented as a pid controller object, an array of pid controller objects,
a genss object, or a genss array.

• If all the gains Kp, Ki, Kd, and Tf have numeric values, then C is a pid controller
object. When the gains are numeric arrays, C is an array of pid controller objects. The
controller type (P, I, PI, PD, PDF, PID, PIDF) depends upon the values of the gains.
For example, when Kd = 0, but Kp and Ki are nonzero, C is a PI controller.

• If one or more gains is a tunable parameter (realp) or generalized matrix (genmat),
then C is a generalized state-space model (genss).

Properties

Kp, Ki, Kd

PID controller gains.

The Kp, Ki, and Kd properties store the proportional, integral, and derivative gains,
respectively. Kp, Ki, and Kd values are real and finite.

Tf

Derivative filter time constant.

The Tf property stores the derivative filter time constant of the pid controller object. Tf
are real, finite, and greater than or equal to zero.

IFormula

Discrete integrator formula IF(z) for the integrator of the discrete-time pid controller C:

C K K IF z
K

T DF z
p i

d

f

= + () +
+ ()

.

IFormula can take the following values:

1 Functions — Alphabetical List

1-524

•
'ForwardEuler' — IF(z) = T

z

s

-1
.

This formula is best for small sampling time, where the Nyquist limit is large
compared to the bandwidth of the controller. For larger sampling time, the
ForwardEuler formula can result in instability, even when discretizing a system
that is stable in continuous time.

•
'BackwardEuler' — IF(z) = T z

z

s

-1
.

An advantage of the BackwardEuler formula is that discretizing a stable continuous-
time system using this formula always yields a stable discrete-time result.

•
'Trapezoidal' — IF(z) = T z

z

s

2

1

1

+

-

.

An advantage of the Trapezoidal formula is that discretizing a stable continuous-
time system using this formula always yields a stable discrete-time result. Of all
available integration formulas, the Trapezoidal formula yields the closest match
between frequency-domain properties of the discretized system and the corresponding
continuous-time system.

When C is a continuous-time controller, IFormula is ''.

Default: 'ForwardEuler'

DFormula

Discrete integrator formula DF(z) for the derivative filter of the discrete-time pid
controller C:

C K K IF z
K

T DF z
p i

d

f

= + () +
+ ()

.

DFormula can take the following values:

•
'ForwardEuler' — DF(z) = T

z

s

-1
.

 pid

1-525

This formula is best for small sampling time, where the Nyquist limit is large
compared to the bandwidth of the controller. For larger sampling time, the
ForwardEuler formula can result in instability, even when discretizing a system
that is stable in continuous time.

•
'BackwardEuler' — DF(z) = T z

z

s

-1
.

An advantage of the BackwardEuler formula is that discretizing a stable continuous-
time system using this formula always yields a stable discrete-time result.

•
'Trapezoidal' — DF(z) = T z

z

s

2

1

1

+

-

.

An advantage of the Trapezoidal formula is that discretizing a stable continuous-
time system using this formula always yields a stable discrete-time result. Of all
available integration formulas, the Trapezoidal formula yields the closest match
between frequency-domain properties of the discretized system and the corresponding
continuous-time system.

The Trapezoidal value for DFormula is not available for a pid controller with no
derivative filter (Tf = 0).

When C is a continuous-time controller, DFormula is ''.

Default: 'ForwardEuler'

InputDelay

Time delay on the system input. InputDelay is always 0 for a pid controller object.

OutputDelay

Time delay on the system Output. OutputDelay is always 0 for a pid controller object.

Ts

Sampling time. For continuous-time models, Ts = 0. For discrete-time models, Ts is
a positive scalar representing the sampling period. This value is expressed in the unit
specified by the TimeUnit property of the model. To denote a discrete-time model with
unspecified sampling time, set Ts = -1.

1 Functions — Alphabetical List

1-526

Changing this property does not discretize or resample the model. Use c2d and d2c to
convert between continuous- and discrete-time representations. Use d2d to change the
sampling time of a discrete-time system.

Default: 0 (continuous time)

TimeUnit

String representing the unit of the time variable. This property specifies the units for the
time variable, the sampling time Ts, and any time delays in the model. Use any of the
following values:

• 'nanoseconds'

• 'microseconds'

• 'milliseconds'

• 'seconds'

• 'minutes'

• 'hours'

• 'days'

• 'weeks'

• 'months'

• 'years'

Changing this property has no effect on other properties, and therefore changes the
overall system behavior. Use chgTimeUnit to convert between time units without
modifying system behavior.

Default: 'seconds'

InputName

Input channel names. Set InputName to a string for single-input model. For a multi-
input model, set InputName to a cell array of strings.

Alternatively, use automatic vector expansion to assign input names for multi-input
models. For example, if sys is a two-input model, enter:

sys.InputName = 'controls';

 pid

1-527

The input names automatically expand to {'controls(1)';'controls(2)'}.

You can use the shorthand notation u to refer to the InputName property. For example,
sys.u is equivalent to sys.InputName.

Input channel names have several uses, including:

• Identifying channels on model display and plots
• Extracting subsystems of MIMO systems
• Specifying connection points when interconnecting models

Default: Empty string '' for all input channels

InputUnit

Input channel units. Use InputUnit to keep track of input signal units. For a single-
input model, set InputUnit to a string. For a multi-input model, set InputUnit to a cell
array of strings. InputUnit has no effect on system behavior.

Default: Empty string '' for all input channels

InputGroup

Input channel groups. The InputGroup property lets you assign the input channels of
MIMO systems into groups and refer to each group by name. Specify input groups as a
structure. In this structure, field names are the group names, and field values are the
input channels belonging to each group. For example:

sys.InputGroup.controls = [1 2];

sys.InputGroup.noise = [3 5];

creates input groups named controls and noise that include input channels 1, 2 and
3, 5, respectively. You can then extract the subsystem from the controls inputs to all
outputs using:

sys(:,'controls')

Default: Struct with no fields

OutputName

Output channel names. Set OutputName to a string for single-output model. For a multi-
output model, set OutputName to a cell array of strings.

1 Functions — Alphabetical List

1-528

Alternatively, use automatic vector expansion to assign output names for multi-output
models. For example, if sys is a two-output model, enter:

sys.OutputName = 'measurements';

The output names to automatically expand to
{'measurements(1)';'measurements(2)'}.

You can use the shorthand notation y to refer to the OutputName property. For example,
sys.y is equivalent to sys.OutputName.

Output channel names have several uses, including:

• Identifying channels on model display and plots
• Extracting subsystems of MIMO systems
• Specifying connection points when interconnecting models

Default: Empty string '' for all input channels

OutputUnit

Output channel units. Use OutputUnit to keep track of output signal units. For
a single-output model, set OutputUnit to a string. For a multi-output model, set
OutputUnit to a cell array of strings. OutputUnit has no effect on system behavior.

Default: Empty string '' for all input channels

OutputGroup

Output channel groups. The OutputGroup property lets you assign the output channels
of MIMO systems into groups and refer to each group by name. Specify output groups as
a structure. In this structure, field names are the group names, and field values are the
output channels belonging to each group. For example:

sys.OutputGroup.temperature = [1];

sys.InputGroup.measurement = [3 5];

creates output groups named temperature and measurement that include output
channels 1, and 3, 5, respectively. You can then extract the subsystem from all inputs to
the measurement outputs using:

sys('measurement',:)

 pid

1-529

Default: Struct with no fields

Name

System name. Set Name to a string to label the system.

Default: ''

Notes

Any text that you want to associate with the system. Set Notes to a string or a cell array
of strings.

Default: {}

UserData

Any type of data you wish to associate with system. Set UserData to any MATLAB data
type.

Default: []

SamplingGrid

Sampling grid for model arrays, specified as a data structure.

For model arrays that are derived by sampling one or more independent variables,
this property tracks the variable values associated with each model in the array. This
information appears when you display or plot the model array. Use this information to
trace results back to the independent variables.

Set the field names of the data structure to the names of the sampling variables. Set
the field values to the sampled variable values associated with each model in the array.
All sampling variables should be numeric and scalar valued, and all arrays of sampled
values should match the dimensions of the model array.

For example, suppose you create a 11-by-1 array of linear models, sysarr, by taking
snapshots of a linear time-varying system at times t = 0:10. The following code stores
the time samples with the linear models.

 sysarr.SamplingGrid = struct('time',0:10)

Similarly, suppose you create a 6-by-9 model array, M, by independently sampling two
variables, zeta and w. The following code attaches the (zeta,w) values to M.

1 Functions — Alphabetical List

1-530

[zeta,w] = ndgrid(<6 values of zeta>,<9 values of w>)

M.SamplingGrid = struct('zeta',zeta,'w',w)

When you display M, each entry in the array includes the corresponding zeta and w
values.

M

M(:,:,1,1) [zeta=0.3, w=5] =

 25

 s^2 + 3 s + 25

M(:,:,2,1) [zeta=0.35, w=5] =

 25

 s^2 + 3.5 s + 25

...

Default: []

Examples

PID Controller with Proportional and Derivative Gains, and Filter Time
Constant (PDF Controller)

Create a continuous-time controller with proportional and derivative gains, and filter
time constant (PDF controller).

Kp=1;

Ki=0;

Kd=3;

Tf=0.5;

C = pid(Kp,Ki,Kd,Tf)

C =

 pid

1-531

 s

 Kp + Kd * --------

 Tf*s+1

 with Kp = 1, Kd = 3, Tf = 0.5

Continuous-time PDF controller in parallel form.

The display hows the controller type, formula, and parameter values.

Discrete-Time PI Controller

Create a discrete-time PI controller with trapezoidal discretization formula.

To create a discrete-time controller, set the value of Ts using Name,Value syntax.

C = pid(5,2.4,'Ts',0.1,'IFormula','Trapezoidal') % Ts = 0.1s

This command produces the result:

Discrete-time PI controller in parallel form:

 Ts*(z+1)

Kp + Ki * --------

 2*(z-1)

with Kp = 5, Ki = 2.4, Ts = 0.1

Alternatively, you can create the same discrete-time controller by supplying Ts as the
fifth argument after all four PID parameters Kp, Ki, Kd, and Tf.

C = pid(5,2.4,0,0,0.1,'IFormula','Trapezoidal');

PID Controller with Custom Input and Output Names

Create a PID controller, and set dynamic system properties InputName and
OutputName.

C = pid(1,2,3,'InputName','e','OutputName','u');

Array of PID Controllers

Create a 2-by-3 grid of PI controllers with proportional gain ranging from 1–2 and
integral gain ranging from 5–9.

1 Functions — Alphabetical List

1-532

Create a grid of PI controllers with proportional gain varying row to row and integral
gain varying column to column. To do so, start with arrays representing the gains.

Kp = [1 1 1;2 2 2];

Ki = [5:2:9;5:2:9];

pi_array = pid(Kp,Ki,'Ts',0.1,'IFormula','BackwardEuler');

These commands produce a 2-by-3 array of discrete-time pid objects. All pid objects in
an array must have the same sample time, discrete integrator formulas, and dynamic
system properties (such as InputName and OutputName).

Alternatively, you can use stack to build arrays of pid objects.

C = pid(1,5,0.1) % PID controller

Cf = pid(1,5,0.1,0.5) % PID controller with filter

pid_array = stack(2,C,Cf); % stack along 2nd array dimension

These commands produce a 1-by-2 array of controllers. Enter the command:

size(pid_array)

to see the result

1x2 array of PID controller.

Each PID has 1 output and 1 input.

Convert PID Controller from Standard to Parallel Form

Convert a standard form pidstd controller to parallel form.

Standard PID form expresses the controller actions in terms of an overall proportional
gain Kp, integral and derivative times Ti and Td, and filter divisor N. You can convert any
standard form controller to parallel form using pid.

stdsys = pidstd(2,3,4,5); % Standard-form controller

parsys = pid(stdsys)

These commands produce a parallel-form controller:

Continuous-time PIDF controller in parallel form:

 1 s

Kp + Ki * --- + Kd * --------

 s Tf*s+1

 pid

1-533

with Kp = 2, Ki = 0.66667, Kd = 8, Tf = 0.8

Convert Dynamic System to Parallel-Form PID Controller

Convert a continuous-time dynamic system that represents a PID controller to parallel
pid form.

The dynamic system

H s
s s

s
() =

+() +()3 1 2

represents a PID controller. Use pid to obtain H(s) to in terms of the PID gains Kp, Ki,
and Kd.

H = zpk([-1,-2],0,3);

C = pid(H)

These commands produce the result:

Continuous-time PID controller in parallel form:

 1

Kp + Ki * --- + Kd * s

 s

with Kp = 9, Ki = 6, Kd = 3

Convert Discrete-Time Zero-Pole-Gain Model to Parallel-Form PID Controller

Convert a discrete-time dynamic system that represents a PID controller with derivative
filter to parallel pid form.

% PIDF controller expressed in zpk form

sys = zpk([-0.5,-0.6],[1 -0.2],3,'Ts',0.1)

The resulting pid object depends upon the discrete integrator formula you specify for
IFormula and DFormula. For example, if you use the default ForwardEuler for both
formulas:

C = pid(sys)

returns the result

1 Functions — Alphabetical List

1-534

Discrete-time PIDF controller in parallel form:

 Ts 1

Kp + Ki * ------ + Kd * -----------

 z-1 Tf+Ts/(z-1)

with Kp = 2.75, Ki = 60, Kd = 0.020833, Tf = 0.083333, Ts = 0.1

Converting using the Trapezoidal formula returns different parameter values:

C = pid(sys,'IFormula','Trapezoidal','DFormula','Trapezoidal')

This command returns the result:

Discrete-time PIDF controller in parallel form:

 Ts*(z+1) 1

Kp + Ki * -------- + Kd * -------------------

 2*(z-1) Tf+Ts/2*(z+1)/(z-1)

with Kp = -0.25, Ki = 60, Kd = 0.020833, Tf = 0.033333, Ts = 0.1

For this particular sys, you cannot write sys in parallel PID form using the
BackwardEuler formula for DFormula. Doing so would result in Tf < 0, which is not
permitted. In that case, pid returns an error.

Discretize a Continuous-time PID Controller

First, discretize the controller using the 'zoh' method of c2d.

Cc = pid(1,2,3,4) % continuous-time pidf controller

Cd1 = c2d(Cc,0.1,'zoh')

c2d computes new parameters for the discrete-time controller:

Discrete-time PIDF controller in parallel form:

 Ts 1

Kp + Ki * ------ + Kd * -----------

 z-1 Tf+Ts/(z-1)

with Kp = 1, Ki = 2, Kd = 3.0377, Tf = 4.0502, Ts = 0.1

The resulting discrete-time controller uses ForwardEuler (Ts/(z–1)) for both IFormula
and DFormula.

 pid

1-535

The discrete integrator formulas of the discretized controller depend upon the c2d
discretization method, as described in “Tips” on page 1-535. To use a different
IFormula and DFormula, directly set Ts, IFormula, and DFormula to the desired
values:

Cd2 = Cc;

Cd2.Ts = 0.1;

Cd2.IFormula = 'BackwardEuler';

Cd2.DFormula = 'BackwardEuler';

These commands do not compute new parameter values for the discretized controller. To
see this, enter:

Cd2

to obtain the result:

Discrete-time PIDF controller in parallel form:

 Ts*z 1

Kp + Ki * ------ + Kd * -------------

 z-1 Tf+Ts*z/(z-1)

with Kp = 1, Ki = 2, Kd = 3, Tf = 4, Ts = 0.1

More About

Tips

• Use pid either to create a pid controller object from known PID gains and filter time
constant, or to convert a dynamic system model to a pid object.

• To deisgn a PID controller for a particular plant, use pidtune or pidTuner.
• Create arrays of pid controller objects by:

• Specifying array values for Kp,Ki,Kd, and Tf
• Specifying an array of dynamic systems sys to convert to pid controller objects
• Using stack to build arrays from individual controllers or smaller arrays

In an array of pid controllers, each controller must have the same sampling time Ts
and discrete integrator formulas IFormula and DFormula.

1 Functions — Alphabetical List

1-536

• To create or convert to a standard-form controller, use pidstd. Standard form
expresses the controller actions in terms of an overall proportional gain Kp, integral
and derivative times Ti and Td, and filter divisor N:

C K
T s

T s

T

N
s

p
i

d

d
= + +

+

Ê

Ë

Á
Á
ÁÁ

ˆ

¯

˜
˜
˜̃

1
1 1

1

.

• There are two ways to discretize a continuous-time pid controller:

• Use the c2d command. c2d computes new parameter values for the discretized
controller. The discrete integrator formulas of the discretized controller depend
upon the c2d discretization method you use, as shown in the following table.

c2d Discretization Method IFormula DFormula

'zoh' ForwardEuler ForwardEuler

'foh' Trapezoidal Trapezoidal

'tustin' Trapezoidal Trapezoidal

'impulse' ForwardEuler ForwardEuler

'matched' ForwardEuler ForwardEuler

For more information about c2d discretization methods, See the c2d reference
page. For more information about IFormula and DFormula, see “Properties” on
page 1-523 .

• If you require different discrete integrator formulas, you can discretize the
controller by directly setting Ts, IFormula, and DFormula to the desired values.
(See this example.) However, this method does not compute new gain and filter-
constant values for the discretized controller. Therefore, this method might yield
a poorer match between the continuous- and discrete-time pid controllers than
using c2d.

• “What Are Model Objects?”
• “PID Controllers”

See Also
pidstd | piddata | pidtune | pidTuner | ltiblock.pid | genss | realp

 pid

1-537

Tutorials
• “Proportional-Integral-Derivative (PID) Controller”
• “Discrete-Time Proportional-Integral-Derivative (PID) Controller”

1 Functions — Alphabetical List

1-538

piddata
Access PID data

Syntax

[Kp,Ki,Kd,Tf] = piddata(sys)

[Kp,Ki,Kd,Tf,Ts] = piddata(sys)

[Kp,Ki,Kd,Tf,Ts] = piddata(sys, J1,...,JN)

Description

[Kp,Ki,Kd,Tf] = piddata(sys) returns the PID gains Kp,Ki, Kd and the filter time
constant Tf of the parallel-form controller represented by the dynamic system sys.

[Kp,Ki,Kd,Tf,Ts] = piddata(sys) also returns the sample time Ts.

[Kp,Ki,Kd,Tf,Ts] = piddata(sys, J1,...,JN) extracts the data for a subset of
entries in the array of sys dynamic systems. The indices J specify the array entries to
extract.

Input Arguments

sys

SISO dynamic system or array of SISO dynamic systems. If sys is not a pid object, it
must represent a valid PID controller that can be written in parallel PID form.

J

Integer indices of N entries in the array sys of dynamic systems.

Output Arguments

Kp

Proportional gain of the parallel-form PID controller represented by dynamic system sys.

 piddata

1-539

If sys is a pid controller object, the output Kp is equal to the Kp value of sys.

If sys is not a pid object, Kp is the proportional gain of a parallel PID controller
equivalent to sys.

If sys is an array of dynamic systems, Kp is an array of the same dimensions as sys.

Ki

Integral gain of the parallel-form PID controller represented by dynamic system sys.

If sys is a pid controller object, the output Ki is equal to the Ki value of sys.

If sys is not a pid object, Ki is the integral gain of a parallel PID controller equivalent to
sys.

If sys is an array of dynamic systems, Ki is an array of the same dimensions as sys.

Kd

Derivative gain of the parallel-form PID controller represented by dynamic system sys.

If sys is a pid controller object, the output Kd is equal to the Kd value of sys.

If sys is not a pid object, Kd is the derivative gain of a parallel PID controller equivalent
to sys.

If sys is an array of dynamic systems, Kd is an array of the same dimensions as sys.

Tf

Filter time constant of the parallel-form PID controller represented by dynamic system
sys.

If sys is a pid controller object, the output Tf is equal to the Tf value of sys.

If sys is not a pid object, Tf is the filter time constant of a parallel PID controller
equivalent to sys.

If sys is an array of dynamic systems, Tf is an array of the same dimensions as sys.

Ts

Sampling time of the dynamic system sys. Ts is always a scalar value.

1 Functions — Alphabetical List

1-540

Examples

Extract the proportional, integral, and derivative gains and the filter time constant from
a parallel-form pid controller.

For the following pid object:

sys = pid(1,4,0.3,10);

you can extract the parameter values from sys by entering:

[Kp Ki Kd Tf] = piddata(sys);

Extract the parallel form proportional and integral gains from an equivalent standard-
form PI controller.

For a standard-form PI controller, such as:

sys = pidstd(2,3);

you can extract the gains of an equivalent parallel-form PI controller by entering:

[Kp Ki] = piddata(sys)

These commands return the result:

Kp =

 2

Ki =

 0.6667

Extract parameters from a dynamic system that represents a PID controller.

The dynamic system

H z
z z

z z
() =

-() -()

-() +()

0 5 0 6

1 0 8

. .

.

represents a discrete-time PID controller with a derivative filter. Use piddata to extract
the parallel-form PID parameters.

 piddata

1-541

H = zpk([0.5 0.6],[1,-0.8],1,0.1); % sampling time Ts = 0.1s

[Kp Ki Kd Tf Ts] = piddata(H);

the piddata function uses the default ForwardEuler discrete integrator formula for
Iformula and Dformula to compute the parameter values.

Extract the gains from an array of PI controllers.

sys = pid(rand(2,3),rand(2,3)); % 2-by-3 array of PI controllers

[Kp Ki Kd Tf] = piddata(sys);

The parameters Kp, Ki, Kd, and Tf are also 2-by-3 arrays.

Use the index input J to extract the parameters of a subset of sys.

[Kp Ki Kd Tf] = piddata(sys,5);

More About

Tips

If sys is not a pid controller object, piddata returns the PID gains Kp, Ki, Kd and the
filter time constant Tf of a parallel-form controller equivalent to sys.

For discrete-time sys, piddata returns the parameters of an equivalent parallel-form
controller. This controller has discrete integrator formulas Iformula and Dformula
set to ForwardEuler. See the pid reference page for more information about discrete
integrator formulas.

See Also
pid | pidstd | get

1 Functions — Alphabetical List

1-542

pidstd
Create a PID controller in standard form, convert to standard-form PID controller

Syntax

C = pidstd(Kp,Ti,Td,N)

C = pidstd(Kp,Ti,Td,N,Ts)

C = pidstd(sys)

C = pidstd(Kp)

C = pidstd(Kp,Ti)

C = pidstd(Kp,Ti,Td)

C = pidstd(...,Name,Value)

C = pidstd

Description

C = pidstd(Kp,Ti,Td,N) creates a continuous-time PIDF (PID with first-order
derivative filter) controller object in standard form. The controller has proportional gain
Kp, integral and derivative times Ti and Td, and first-order derivative filter divisor N:

C K
T s

T s

T

N
s

p
i

d

d
= + +

+

Ê

Ë

Á
Á
ÁÁ

ˆ

¯

˜
˜
˜̃

1
1 1

1

.

C = pidstd(Kp,Ti,Td,N,Ts) creates a discrete-time controller with sampling time
Ts. The discrete-time controller is:

C K
T

IF z
T

T

N
DF z

p
i

d

d
= + () +

+ ()

Ê

Ë

Á
Á
ÁÁ

ˆ

¯

˜
˜
˜̃

1
1

.

IF(z) and DF(z) are the discrete integrator formulas for the integrator and derivative
filter. By default, IF(z) = DF(z) = Tsz/(z – 1). To choose different discrete integrator

 pidstd

1-543

formulas, use the IFormula and DFormula inputs. (See “Properties” on page 1-545
for more information about IFormula and DFormula). If DFormula = 'ForwardEuler'
(the default value) and N ≠ Inf, then Ts, Td, and N must satisfy Td/N > Ts/2. This
requirement ensures a stable derivative filter pole.

C = pidstd(sys) converts the dynamic system sys to a standard form pidstd
controller object.

C = pidstd(Kp) creates a continuous-time proportional (P) controller with Ti = Inf,
Td = 0, and N = Inf.

C = pidstd(Kp,Ti) creates a proportional and integral (PI) controller with Td = 0 and
N = Inf.

C = pidstd(Kp,Ti,Td) creates a proportional, integral, and derivative (PID)
controller with N = Inf.

C = pidstd(...,Name,Value) creates a controller or converts a dynamic system to
a pidstd controller object with additional options specified by one or more Name,Value
pair arguments.

C = pidstd creates a P controller with Kp = 1.

Input Arguments

Kp

Proportional gain.

Kp must be a real and finite value.

For an array of pidstd controllers, Kp must be an array of real and finite values.

Default: 1

Ti

Integral time.

Ti must be a real and positive value. When Ti = Inf, the controller has no integral
action.

1 Functions — Alphabetical List

1-544

For an array of pidstd controllers, Ti must be an array of real and positive values.

Default: Inf

Td

Derivative time.

Td must be a real, finite, and nonnegative value. When Td = 0, the controller has no
derivative action.

For an array of pidstd controllers, Td must be an array of real, finite, and nonnegative
values.

Default: 0

N

Time constant of the first-order derivative filter.

N must be a real and positive value. When N = Inf, the controller has no derivative
filter.

For an array of pidstd controllers, N must be an array of real and positive values.

Default: Inf

Ts

Sampling time.

To create a discrete-time pidstd controller, provide a positive real value
(Ts > 0).pidstd does not support discrete-time controller with undetermined sample
time (Ts = -1).

Ts must be a scalar value. In an array of pidstd controllers, each controller must have
the same Ts.

sys

SISO dynamic system to convert to standard pidstd form.

sys must represent a valid controller that can be written in standard form with Ti > 0,
Td ≥ 0, and N > 0.

 pidstd

1-545

sys can also be an array of SISO dynamic systems.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

Use Name,Value syntax to set the numerical integration formulas IFormula and
DFormula of a discrete-time pidstd controller, or to set other object properties such
as InputName and OutputName. For information about available properties of pidstd
controller objects, see “Properties” on page 1-545.

Output Arguments

C

pidstd object representing a single-input, single-output PID controller in standard form.

The controller type (P, PI, PD, PDF, PID, PIDF) depends upon the values of Kp, Ti, Td,
and N. For example, when Td = Inf and Kp and Ti are finite and nonzero, C is a PI
controller. Enter getType(C) to obtain the controller type.

When the inputs Kp,Ti, Td, and N or the input sys are arrays, C is an array of pidstd
objects.

Properties

Kp

Proportional gain. Kp must be real and finite.

Ti

Integral time. Ti must be real, finite, and greater than or equal to zero.

Td

Derivative time. Td must be real, finite, and greater than or equal to zero.

1 Functions — Alphabetical List

1-546

N

Derivative time. N must be real, and greater than or equal to zero.

IFormula

Discrete integrator formula IF(z) for the integrator of the discrete-time pidstd controller
C:

C K
T

IF z
T

T

N
DF z

p
i

d

d
= + () +

+ ()

Ê

Ë

Á
Á
ÁÁ

ˆ

¯

˜
˜
˜̃

1
1

.

IFormula can take the following values:

•
'ForwardEuler' — IF(z) = T

z

s

-1
.

This formula is best for small sampling time, where the Nyquist limit is large
compared to the bandwidth of the controller. For larger sampling time, the
ForwardEuler formula can result in instability, even when discretizing a system
that is stable in continuous time.

•
'BackwardEuler' — IF(z) = T z

z

s

-1
.

An advantage of the BackwardEuler formula is that discretizing a stable continuous-
time system using this formula always yields a stable discrete-time result.

•
'Trapezoidal' — IF(z) = T z

z

s

2

1

1

+

-

.

An advantage of the Trapezoidal formula is that discretizing a stable continuous-
time system using this formula always yields a stable discrete-time result. Of all
available integration formulas, the Trapezoidal formula yields the closest match
between frequency-domain properties of the discretized system and the corresponding
continuous-time system.

When C is a continuous-time controller, IFormula is ''.

 pidstd

1-547

Default: 'ForwardEuler'

DFormula

Discrete integrator formula DF(z) for the derivative filter of the discrete-time pidstd
controller C:

C K
T

IF z
T

T

N
DF z

p
i

d

d
= + () +

+ ()

Ê

Ë

Á
Á
ÁÁ

ˆ

¯

˜
˜
˜̃

1
1

.

DFormula can take the following values:

•
'ForwardEuler' — DF(z) = T

z

s

-1
.

This formula is best for small sampling time, where the Nyquist limit is large
compared to the bandwidth of the controller. For larger sampling time, the
ForwardEuler formula can result in instability, even when discretizing a system
that is stable in continuous time.

•
'BackwardEuler' — DF(z) = T z

z

s

-1
.

An advantage of the BackwardEuler formula is that discretizing a stable continuous-
time system using this formula always yields a stable discrete-time result.

•
'Trapezoidal' — DF(z) = T z

z

s

2

1

1

+

-

.

An advantage of the Trapezoidal formula is that discretizing a stable continuous-
time system using this formula always yields a stable discrete-time result. Of all
available integration formulas, the Trapezoidal formula yields the closest match
between frequency-domain properties of the discretized system and the corresponding
continuous-time system.

The Trapezoidal value for DFormula is not available for a pidstd controller with
no derivative filter (N = Inf).

When C is a continuous-time controller, DFormula is ''.

1 Functions — Alphabetical List

1-548

Default: 'ForwardEuler'

InputDelay

Time delay on the system input. InputDelay is always 0 for a pidstd controller object.

OutputDelay

Time delay on the system Output. OutputDelay is always 0 for a pidstd controller
object.

Ts

Sampling time. For continuous-time models, Ts = 0. For discrete-time models, Ts is
a positive scalar representing the sampling period. This value is expressed in the unit
specified by the TimeUnit property of the model. To denote a discrete-time model with
unspecified sampling time, set Ts = -1.

Changing this property does not discretize or resample the model. Use c2d and d2c to
convert between continuous- and discrete-time representations. Use d2d to change the
sampling time of a discrete-time system.

Default: 0 (continuous time)

TimeUnit

String representing the unit of the time variable. This property specifies the units for the
time variable, the sampling time Ts, and any time delays in the model. Use any of the
following values:

• 'nanoseconds'

• 'microseconds'

• 'milliseconds'

• 'seconds'

• 'minutes'

• 'hours'

• 'days'

• 'weeks'

• 'months'

 pidstd

1-549

• 'years'

Changing this property has no effect on other properties, and therefore changes the
overall system behavior. Use chgTimeUnit to convert between time units without
modifying system behavior.

Default: 'seconds'

InputName

Input channel names. Set InputName to a string for single-input model. For a multi-
input model, set InputName to a cell array of strings.

Alternatively, use automatic vector expansion to assign input names for multi-input
models. For example, if sys is a two-input model, enter:

sys.InputName = 'controls';

The input names automatically expand to {'controls(1)';'controls(2)'}.

You can use the shorthand notation u to refer to the InputName property. For example,
sys.u is equivalent to sys.InputName.

Input channel names have several uses, including:

• Identifying channels on model display and plots
• Extracting subsystems of MIMO systems
• Specifying connection points when interconnecting models

Default: Empty string '' for all input channels

InputUnit

Input channel units. Use InputUnit to keep track of input signal units. For a single-
input model, set InputUnit to a string. For a multi-input model, set InputUnit to a cell
array of strings. InputUnit has no effect on system behavior.

Default: Empty string '' for all input channels

InputGroup

Input channel groups. The InputGroup property lets you assign the input channels of
MIMO systems into groups and refer to each group by name. Specify input groups as a

1 Functions — Alphabetical List

1-550

structure. In this structure, field names are the group names, and field values are the
input channels belonging to each group. For example:

sys.InputGroup.controls = [1 2];

sys.InputGroup.noise = [3 5];

creates input groups named controls and noise that include input channels 1, 2 and
3, 5, respectively. You can then extract the subsystem from the controls inputs to all
outputs using:

sys(:,'controls')

Default: Struct with no fields

OutputName

Output channel names. Set OutputName to a string for single-output model. For a multi-
output model, set OutputName to a cell array of strings.

Alternatively, use automatic vector expansion to assign output names for multi-output
models. For example, if sys is a two-output model, enter:

sys.OutputName = 'measurements';

The output names to automatically expand to
{'measurements(1)';'measurements(2)'}.

You can use the shorthand notation y to refer to the OutputName property. For example,
sys.y is equivalent to sys.OutputName.

Output channel names have several uses, including:

• Identifying channels on model display and plots
• Extracting subsystems of MIMO systems
• Specifying connection points when interconnecting models

Default: Empty string '' for all input channels

OutputUnit

Output channel units. Use OutputUnit to keep track of output signal units. For
a single-output model, set OutputUnit to a string. For a multi-output model, set
OutputUnit to a cell array of strings. OutputUnit has no effect on system behavior.

 pidstd

1-551

Default: Empty string '' for all input channels

OutputGroup

Output channel groups. The OutputGroup property lets you assign the output channels
of MIMO systems into groups and refer to each group by name. Specify output groups as
a structure. In this structure, field names are the group names, and field values are the
output channels belonging to each group. For example:

sys.OutputGroup.temperature = [1];

sys.InputGroup.measurement = [3 5];

creates output groups named temperature and measurement that include output
channels 1, and 3, 5, respectively. You can then extract the subsystem from all inputs to
the measurement outputs using:

sys('measurement',:)

Default: Struct with no fields

Name

System name. Set Name to a string to label the system.

Default: ''

Notes

Any text that you want to associate with the system. Set Notes to a string or a cell array
of strings.

Default: {}

UserData

Any type of data you wish to associate with system. Set UserData to any MATLAB data
type.

Default: []

SamplingGrid

Sampling grid for model arrays, specified as a data structure.

1 Functions — Alphabetical List

1-552

For model arrays that are derived by sampling one or more independent variables,
this property tracks the variable values associated with each model in the array. This
information appears when you display or plot the model array. Use this information to
trace results back to the independent variables.

Set the field names of the data structure to the names of the sampling variables. Set
the field values to the sampled variable values associated with each model in the array.
All sampling variables should be numeric and scalar valued, and all arrays of sampled
values should match the dimensions of the model array.

For example, suppose you create a 11-by-1 array of linear models, sysarr, by taking
snapshots of a linear time-varying system at times t = 0:10. The following code stores
the time samples with the linear models.

 sysarr.SamplingGrid = struct('time',0:10)

Similarly, suppose you create a 6-by-9 model array, M, by independently sampling two
variables, zeta and w. The following code attaches the (zeta,w) values to M.

[zeta,w] = ndgrid(<6 values of zeta>,<9 values of w>)

M.SamplingGrid = struct('zeta',zeta,'w',w)

When you display M, each entry in the array includes the corresponding zeta and w
values.

M

M(:,:,1,1) [zeta=0.3, w=5] =

 25

 s^2 + 3 s + 25

M(:,:,2,1) [zeta=0.35, w=5] =

 25

 s^2 + 3.5 s + 25

...

Default: []

 pidstd

1-553

Examples

Create a continuous-time standard-form PDF controller with proportional gain 1,
derivative time 3, and a filter divisor of 6.

C = pidstd(1,Inf,3,6);

C =

 s

 Kp * (1 + Td * ------------)

 (Td/N)*s+1

 with Kp = 1, Td = 3, N = 6

Continuous-time PDF controller in standard form

The display shows the controller type, formula, and coefficient values.

Create a discrete-time PI controller with trapezoidal discretization formula.

To create a discrete-time controller, set the value of Ts using Name,Value syntax.

C = pidstd(1,0.5,'Ts',0.1,'IFormula','Trapezoidal') % Ts = 0.1s

This command produces the result:

Discrete-time PI controller in standard form:

 1 Ts*(z+1)

Kp * (1 + ---- * --------)

 Ti 2*(z-1)

with Kp = 1, Ti = 0.5, Ts = 0.1

Alternatively, you can create the same discrete-time controller by supplying Ts as the
fifth argument after all four PID parameters Kp, Ti, Td, and N.

C = pidstd(5,2.4,0,Inf,0.1,'IFormula','Trapezoidal');

Create a PID controller and set dynamic system properties InputName and
OutputName.

C = pidstd(1,0.5,3,'InputName','e','OutputName','u')

1 Functions — Alphabetical List

1-554

Create a 2-by-3 grid of PI controllers with proportional gain ranging from 1–2 and
integral time ranging from 5–9.

Create a grid of PI controllers with proportional gain varying row to row and integral
time varying column to column. To do so, start with arrays representing the gains.

Kp = [1 1 1;2 2 2];

Ti = [5:2:9;5:2:9];

pi_array = pidstd(Kp,Ti,'Ts',0.1,'IFormula','BackwardEuler');

These commands produce a 2-by-3 array of discrete-time pidstd objects. All pidstd
objects in an array must have the same sample time, discrete integrator formulas, and
dynamic system properties (such as InputName and OutputName).

Alternatively, you can use the stack command to build arrays of pidstd objects.

C = pidstd(1,5,0.1) % PID controller

Cf = pidstd(1,5,0.1,0.5) % PID controller with filter

pid_array = stack(2,C,Cf); % stack along 2nd array dimension

These commands produce a 1-by-2 array of controllers. Enter the command:

size(pid_array)

to see the result

1x2 array of PID controller.

Each PID has 1 output and 1 input.

Convert a standard form pid controller to parallel form.

Parallel PID form expresses the controller actions in terms of an proportional, integral,
and derivative gains Kp, Ki, and Kd, and a filter time constant Tf. You can convert a
parallel form controller parsys to standard form using pidstd, provided that:

• parsys is not a pure integrator (I) controller.
• The gains Kp, Ki, and Kd of parsys all have the same sign.

parsys = pid(2,3,4,5); % Standard-form controller

stdsys = pidstd(parsys)

These commands produce a parallel-form controller:

Continuous-time PIDF controller in standard form:

 pidstd

1-555

 1 1 s

Kp * (1 + ---- * --- + Td * ------------)

 Ti s (Td/N)*s+1

with Kp = 2, Ti = 0.66667, Td = 2, N = 0.4

Convert a continuous-time dynamic system that represents a PID controller to parallel
pid form.

The dynamic system

H s
s s

s
() =

+() +()3 1 2

represents a PID controller. Use pidstd to obtain H(s) to in terms of the standard-form
PID parameters Kp, Ti, and Td.

H = zpk([-1,-2],0,3);

C = pidstd(H)

These commands produce the result:

Continuous-time PID controller in standard form:

 1 1

Kp * (1 + ---- * --- + Td * s)

 Ti s

with Kp = 9, Ti = 1.5, Td = 0.33333

Convert a discrete-time dynamic system that represents a PID controller with derivative
filter to standard pidstd form.

% PIDF controller expressed in zpk form

sys = zpk([-0.5,-0.6],[1 -0.2],3,'Ts',0.1)

The resulting pidstd object depends upon the discrete integrator formula you specify for
IFormula and DFormula.

For example, if you use the default ForwardEuler for both formulas:

C = pidstd(sys)

you obtain the result:

1 Functions — Alphabetical List

1-556

Discrete-time PIDF controller in standard form:

 1 Ts 1

Kp * (1 + ---- * ------ + Td * ---------------)

 Ti z-1 (Td/N)+Ts/(z-1)

with Kp = 2.75, Ti = 0.045833, Td = 0.0075758, N = 0.090909, Ts = 0.1

For this particular sys, you cannot write sys in standard PID form using the
BackwardEuler formula for the DFormula. Doing so would result in N < 0, which is not
permitted. In that case, pidstd returns an error.

Similarly, you cannot write sys in standard form using the Trapezoidal formula for
both integrators. Doing so would result in negative Ti and Td, which also returns an
error.

Discretize a continuous-time pidstd controller.

First, discretize the controller using the 'zoh' method of c2d.

Cc = pidstd(1,2,3,4) % continuous-time pidf controller

Cd1 = c2d(Cc,0.1,'zoh')

c2d computes new parameters for the discrete-time controller:

Discrete-time PIDF controller in standard form:

 1 Ts 1

Kp * (1 + ---- * ------ + Td * ---------------)

 Ti z-1 (Td/N)+Ts/(z-1)

with Kp = 1, Ti = 2, Td = 3.2044, N = 4, Ts = 0.1

The resulting discrete-time controller uses ForwardEuler (Ts/(z–1)) for both IFormula
and DFormula.

The discrete integrator formulas of the discretized controller depend upon the c2d
discretization method, as described in “Tips” on page 1-557. To use a different
IFormula and DFormula, directly set Ts, IFormula, and DFormula to the desired
values:

Cd2 = Cc;

Cd2.Ts = 0.1;

Cd2.IFormula = 'BackwardEuler';

 pidstd

1-557

Cd2.DFormula = 'BackwardEuler';

These commands do not compute new parameter values for the discretized controller. To
see this, enter:

Cd2

to obtain the result:

Discrete-time PIDF controller in standard form:

 1 Ts*z 1

Kp * (1 + ---- * ------ + Td * -----------------)

 Ti z-1 (Td/N)+Ts*z/(z-1)

with Kp = 1, Ti = 2, Td = 3, N = 4, Ts = 0.1

More About

Tips

• Use pidstd either to create a pidstd controller object from known PID gain, integral
and derivative times, and filter divisor, or to convert a dynamic system model to a
pidstd object.

• To tune a PID controller for a particular plant, use pidtune or pidTuner.
• Create arrays of pidstd controllers by:

• Specifying array values for Kp,Ti,Td, and N
• Specifying an array of dynamic systems sys to convert to standard PID form
• Using stack to build arrays from individual controllers or smaller arrays

In an array of pidstd controllers, each controller must have the same sampling time
Ts and discrete integrator formulas IFormula and DFormula.

• To create or convert to a parallel-form controller, use pid. Parallel form expresses the
controller actions in terms of proportional, integral, and derivative gains Kp, Ki and
Kd, and a filter time constant Tf:

C K
K

s

K s

T s
p

i d

f

= + +

+1
.

1 Functions — Alphabetical List

1-558

• There are two ways to discretize a continuous-time pidstd controller:

• Use the c2d command. c2d computes new parameter values for the discretized
controller. The discrete integrator formulas of the discretized controller depend
upon the c2d discretization method you use, as shown in the following table.

c2d Discretization Method IFormula DFormula

'zoh' ForwardEuler ForwardEuler

'foh' Trapezoidal Trapezoidal

'tustin' Trapezoidal Trapezoidal

'impulse' ForwardEuler ForwardEuler

'matched' ForwardEuler ForwardEuler

For more information about c2d discretization methods, See the c2d reference
page. For more information about IFormula and DFormula, see “Properties” on
page 1-545 .

• If you require different discrete integrator formulas, you can discretize the
controller by directly setting Ts, IFormula, and DFormula to the desired values.
(See this example.) However, this method does not compute new gain and filter-
constant values for the discretized controller. Therefore, this method might yield a
poorer match between the continuous- and discrete-time pidstd controllers than
using c2d.

• “What Are Model Objects?”
• “PID Controllers”

See Also
pid | piddata | pidtune | pidTuner

Tutorials
• “Proportional-Integral-Derivative (PID) Controller”
• “Discrete-Time Proportional-Integral-Derivative (PID) Controller”

 pidstddata

1-559

pidstddata

Access PIDSTD data

Syntax

[Kp,Ti,Td,N] = pidstddata(sys)

[Kp,Ti,Td,N,Ts] = pidstddata(sys)

[Kp,Ti,Td,N,Ts] = pidstddata(sys, J1,...,JN)

Description

[Kp,Ti,Td,N] = pidstddata(sys) returns the proportional gain Kp, integral time
Ti, derivative time Td, and filter divisor N of the standard-form controller represented by
the dynamic system sys.

[Kp,Ti,Td,N,Ts] = pidstddata(sys) also returns the sample time Ts.

[Kp,Ti,Td,N,Ts] = pidstddata(sys, J1,...,JN) extracts the data for a subset
of entries in the array of sys dynamic systems. The indices J specify the array entries to
extract.

Input Arguments

sys

SISO dynamic system or array of SISO dynamic systems. If sys is not a pidstd object, it
must represent a valid PID controller that can be written in standard PID form.

J

Integer indices of N entries in the array sys of dynamic systems.

1 Functions — Alphabetical List

1-560

Output Arguments

Kp

Proportional gain of the standard-form PID controller represented by dynamic system
sys.

If sys is a pidstd controller object, the output Kp is equal to the Kp value of sys.

If sys is not a pidstd object, Kp is the proportional gain of a standard-form PID controller
equivalent to sys.

If sys is an array of dynamic systems, Kp is an array of the same dimensions as sys.

Ti

Integral time constant of the standard-form PID controller represented by dynamic
system sys.

If sys is a pidstd controller object, the output Ti is equal to the Ti value of sys.

If sys is not a pidstd object, Ti is the integral time constant of a standard-form PID
controller equivalent to sys.

If sys is an array of dynamic systems, Ti is an array of the same dimensions as sys.

Td

Derivative time constant of the standard-form PID controller represented by dynamic
system sys.

If sys is a pidstd controller object, the output Td is equal to the Td value of sys.

If sys is not a pidstd object, Td is the derivative time constant of a standard-form PID
controller equivalent to sys.

If sys is an array of dynamic systems, Td is an array of the same dimensions as sys.

N

Filter divisor of the standard-form PID controller represented by dynamic system sys.

If sys is a pidstd controller object, the output N is equal to the N value of sys.

 pidstddata

1-561

If sys is not a pidstd object, N is the filter time constant of a standard-form PID controller
equivalent to sys.

If sys is an array of dynamic systems, N is an array of the same dimensions as sys.

Ts

Sampling time of the dynamic system sys. Ts is always a scalar value.

Examples

Extract the proportional, integral, and derivative gains and the filter time constant from
a standard-form pidstd controller.

For the following pidstd object:

sys = pidstd(1,4,0.3,10);

you can extract the parameter values from sys by entering:

[Kp Ti Td N] = pidstddata(sys);

Extract the standard-form proportional and integral gains from an equivalent parallel-
form PI controller.

For a standard-form PI controller, such as:

sys = pid(2,3);

you can extract the gains of an equivalent parallel-form PI controller by entering:

[Kp Ti] = pidstddata(sys)

These commands return the result:

Kp =

 2

Ti =

1 Functions — Alphabetical List

1-562

 0.6667

Extract parameters from a dynamic system that represents a PID controller.

The dynamic system

H z
z z

z z
() =

-() -()

-() +()

0 5 0 6

1 0 8

. .

.

represents a discrete-time PID controller with a derivative filter. Use pidstddata to
extract the standard-form PID parameters.

H = zpk([0.5 0.6],[1,-0.8],1,0.1); % sampling time Ts = 0.1s

[Kp Ti Td N Ts] = pidstddata(H);

the pidstddata function uses the default ForwardEuler discrete integrator formula for
Iformula and Dformula to compute the parameter values.

Extract the gains from an array of PI controllers.

sys = pidstd(rand(2,3),rand(2,3)); % 2-by-3 array of PI controllers

[Kp Ti Td N] = pidstddata(sys);

The parameters Kp, Ti, Td, and N are also 2-by-3 arrays.

Use the index input J to extract the parameters of a subset of sys.

[Kp Ti Td N] = pidstddata(sys,5);

More About

Tips

If sys is not a pidstd controller object, pidstddata returns Kp, Ti, Td and N values of a
standard-form controller equivalent to sys.

For discrete-time sys, piddata returns parameters of an equivalent pidstd controller.
This controller has discrete integrator formulas Iformula and Dformula set to
ForwardEuler. See the pidstd reference page for more information about discrete
integrator formulas.

 pidstddata

1-563

See Also
pidstd | pid | get

1 Functions — Alphabetical List

1-564

pidtool
Open PID Tuner for PID tuning

Note: pidtool has been removed. Use pidTuner instead.

 pidtune

1-565

pidtune

PID tuning algorithm for linear plant model

Syntax

C = pidtune(sys,type)

C = pidtune(sys,C0)

C = pidtune(sys,type,wc)

C = pidtune(sys,C0,wc)

C = pidtune(sys,...,opts)

[C,info] = pidtune(...)

Description

C = pidtune(sys,type) designs a PID controller of type type for the plant sys in the
unit feedback loop

sysCr y
+

-

u

pidtune tunes the parameters of the PID controller C to balance performance (response
time) and robustness (stability margins).

C = pidtune(sys,C0) designs a controller of the same type and form as the controller
C0. If sys and C0 are discrete-time models, C has the same discrete integrator formulas
as C0.

C = pidtune(sys,type,wc) and C = pidtune(sys,C0,wc) specify a target value
wc for the first 0 dB gain crossover frequency of the open-loop response L = sys*C.

C = pidtune(sys,...,opts) uses additional tuning options, such as the target phase
margin. Use pidtuneOptions to specify the option set opts.

1 Functions — Alphabetical List

1-566

[C,info] = pidtune(...) returns the data structure info, which contains
information about closed-loop stability, the selected open-loop gain crossover frequency,
and the actual phase margin.

Input Arguments
sys

Single-input, single-output “dynamic system model” of the plant for controller design. sys
can be:

• Any type of SISO dynamic system model, including Numeric LTI models and
identified models. If sys is a tunable or uncertain model, pidtune designs a
controller for the current or nominal value of sys.

• A continuous- or discrete-time model.
• Stable, unstable, or integrating. A plant with unstable poles, however, might not be

stabilizable under PID control.
• A model that includes any type of time delay. A plant with long time delays, however,

might not achieve adequate performance under PID control.
• An array of plant models. If sys is an array, pidtune designs a separate controller for

each plant in the array.

If the plant has unstable poles, and sys is one of the following:

• A frd model
• A ss model with internal time delays that cannot be converted to I/O delays

you must use pidtuneOptions to specify the number of unstable poles in the plant, if
any.

type

Controller type (actions) of the controller to design, specified as one of the following
strings.

String Type Continuous-Time Controller
Formula (parallel form)

Discrete-Time Controller
Formula (parallel form,
ForwardEuler integration
method)

'p' Proportional only Kp Kp

 pidtune

1-567

String Type Continuous-Time Controller
Formula (parallel form)

Discrete-Time Controller
Formula (parallel form,
ForwardEuler integration
method)

'i' Integral only K

s

i
K

T

z
i

s

-1

'pi' Proportional and integral
K

K

s
p

i
+ K K

T

z
p i

s
+

-1

'pd' Proportional and
derivative

K K sp d+

K K
z

T
p d

s

+

-1

'pdf' Proportional and
derivative with first-
order filter on derivative
term

K
K s

T s
p

d

f

+

+1
K K

T
T

z

p d

f
s

+

+

-

1

1

'pid' Proportional, integral,
and derivative K

K

s
K sp

i
d+ + K K

T

z
K

z

T
p i

s
d

s

+

-

+

-

1

1

'pidf'Proportional, integral,
and derivative with first-
order filter on derivative
term

K
K

s

K s

T s
p

i d

f

+ +

+1
K K

T

z
K

T
T

z

p i
s

d

f
s

+

-

+

+

-

1

1

1

When you use the type input, pidtune designs a controller in parallel (pid) form. Use
the input C0 instead of type if you want to design a controller in standard (pidstd) form.

If sys is a discrete-time model with sampling time Ts, pidtune designs a discrete-time
controller with the same Ts. The controller has the ForwardEuler discrete integrator
formula for both integral and derivative actions. Use the input C0 instead of type if you
want to design a controller having a different discrete integrator formula.

C0

pid or pidstd controller specifying properties of the designed controller. If you provide
C0, pidtune:

• Designs a controller of the type represented by C0.

1 Functions — Alphabetical List

1-568

• Returns a pid controller, if C0 is a pid controller.
• Returns a pidstd controller, if C0 is a pidstd controller.
• Returns a controller with the same Iformula and Dformula values as C0, if sys is a

discrete-time system. See the pid and pidstd reference pages for more information
about Iformula and Dformula.

wc

Target value for the 0 dB gain crossover frequency of the tuned open-loop response L =
sys*C. Specify wc in units of radians/TimeUnit, where TimeUnit is the time unit of sys.
The crossover frequency wc roughly sets the control bandwidth. The closed-loop response
time is approximately 1/wc.

Increase wc to speed up the response. Decrease wc to improve stability. When you omit
wc, pidtune automatically chooses a value, based on the plant dynamics, that achieves a
balance between response and stability.

opts

Option set specifying additional tuning options for the pidtune design algorithm, such
as target phase margin. Use pidtuneOptions to create opts.

Output Arguments

C

Controller designed for sys. If sys is an array of linear models, pidtune designs a
controller for each linear model and returns an array of PID controllers.

Controller form:

• If the second argument to pidtune is type, C is a pid controller.
• If the second argument to pidtune is C0:

• C is a pid controller, if C0 is a pid object.
• C is a pidstd controller, if C0 is a pidstd object.

Controller type:

 pidtune

1-569

• If the second argument to pidtune is type, C generally has the specified type.
• If the second argument to pidtune is C0, C generally has the same type as C0.

In either case, however, where the algorithm can achieve adequate performance and
robustness using a lower-order controller than specified with type or C0, pidtune
returns a C having fewer actions than specified. For example, C can be a PI controller
even though type is 'pidf'.

Time domain:

• C has the same time domain as sys.
• If sys is a discrete-time model, C has the same sampling time as sys.
• If you specify C0, C has the same Iformula and Dformula as C0. If no C0 is

specified, both Iformula and Dformula are Forward Euler. See the pid and
pidstd reference pages for more information about Iformula and Dformula.

If you specify C0, C also obtains model properties such as InputName and OutputName
from C0. For more information about model properties, see the reference pages for each
type of dynamic system model.

info

Data structure containing information about performance and robustness of the tuned
PID loop. The fields of info are:

• Stable — Boolean value indicating closed-loop stability. Stable is 1 if the closed
loop is stable, and 0 otherwise.

• CrossoverFrequency — First 0 dB crossover frequency of the open-loop system
C*sys, in rad/TimeUnit, where TimeUnit is the time units specified in the
TimeUnit property of sys.

• PhaseMargin — Phase margin of the tuned PID loop, in degrees.

If sys is an array of plant models, info is an array of data structures containing
information about each tuned PID loop.

Examples

PID Controller Design at the Command Line

1 Functions — Alphabetical List

1-570

This example shows how to design a PID controller for the plant given by:

As a first pass, create a model of the plant and design a simple PI controller for it.

sys = zpk([],[-1 -1 -1],1);

[C_pi,info] = pidtune(sys,'pi')

C_pi =

 1

 Kp + Ki * ---

 s

 with Kp = 1.14, Ki = 0.454

Continuous-time PI controller in parallel form.

info =

 Stable: 1

 CrossoverFrequency: 0.5205

 PhaseMargin: 60.0000

C_pi is a pid controller object that represents a PI controller. The fields of info show
that the tuning algorithm chooses an open-loop crossover frequency of about 0.52 rad/s.

Examine the closed-loop step response (reference tracking) of the controlled system.

T_pi = feedback(C_pi*sys, 1);

step(T_pi)

 pidtune

1-571

To improve the response time, you can set a higher target crossover frequency than the
result that pidtune automatically selects, 0.52. Increase the crossover frequency to 1.0.

[C_pi_fast,info] = pidtune(sys,'pi',1.0)

C_pi_fast =

 1

 Kp + Ki * ---

 s

 with Kp = 2.83, Ki = 0.0495

Continuous-time PI controller in parallel form.

1 Functions — Alphabetical List

1-572

info =

 Stable: 1

 CrossoverFrequency: 1

 PhaseMargin: 43.9973

The new controller achieves the higher crossover frequency, but at the cost of a reduced
phase margin.

Compare the closed-loop step response with the two controllers.

T_pi_fast = feedback(C_pi_fast*sys,1);

step(T_pi,T_pi_fast)

axis([0 30 0 1.4])

legend('PI','PI,fast')

 pidtune

1-573

This reduction in performance results because the PI controller does not have enough
degrees of freedom to achieve a good phase margin at a crossover frequency of 1.0 rad/s.
Adding a derivative action improves the response.

Design a PIDF controller for Gc with the target crossover frequency of 1.0 rad/s.

[C_pidf_fast,info] = pidtune(sys,'pidf',1.0)

C_pidf_fast =

 1 s

 Kp + Ki * --- + Kd * --------

 s Tf*s+1

1 Functions — Alphabetical List

1-574

 with Kp = 2.72, Ki = 1.03, Kd = 1.76, Tf = 0.00875

Continuous-time PIDF controller in parallel form.

info =

 Stable: 1

 CrossoverFrequency: 1

 PhaseMargin: 60.0000

The fields of info show that the derivative action in the controller allows the tuning
algorithm to design a more aggressive controller that achieves the target crossover
frequency with a good phase margin.

Compare the closed-loop step response and disturbance rejection for the fast PI and PIDF
controllers.

T_pidf_fast = feedback(C_pidf_fast*sys,1);

step(T_pi_fast, T_pidf_fast);

axis([0 30 0 1.4]);

legend('PI,fast','PIDF,fast');

 pidtune

1-575

You can compare the input (load) disturbance rejection of the controlled system with
the fast PI and PIDF controllers. To do so, plot the response of the closed-loop transfer
function from the plant input to the plant output.

S_pi_fast = feedback(sys,C_pi_fast);

S_pidf_fast = feedback(sys,C_pidf_fast);

step(S_pi_fast,S_pidf_fast);

axis([0 50 0 0.4]);

legend('PI,fast','PIDF,fast');

1 Functions — Alphabetical List

1-576

This plot shows that the PIDF controller also provides faster disturbance rejection.

Tune Standard-Form PID Controller

This example shows how to design a PID controller in standard form for the plant defined
by

sys

s

=

+()

1

1
3

.

To design a controller in standard form, use a standard-form controller as the C0
argument to pidtune.

 pidtune

1-577

sys = zpk([],[-1 -1 -1],1);

C0 = pidstd(1,1,1);

C = pidtune(sys,C0)

C =

 1 1

 Kp * (1 + ---- * --- + Td * s)

 Ti s

 with Kp = 2.18, Ti = 2.36, Td = 0.591

Continuous-time PID controller in standard form

Specify Integrator Discretization Method

This example shows how to design a discrete-time PI controller using a specified method
to discretize the integrator.

If your plant is in discrete time, pidtune automatically returns a discrete-time controller
using the default Forward Euler integration method. To specify a different integration
method, use pid or pidstd to create a discrete-time controller having the desired
integration method.

sys = c2d(tf([1 1],[1 5 6]),0.1);

C0 = pid(1,1,'Ts',0.1,'IFormula','BackwardEuler');

C = pidtune(sys,C0)

C =

 Ts*z

 Kp + Ki * ------

 z-1

 with Kp = -0.518, Ki = 10.4, Ts = 0.1

Sample time: 0.1 seconds

Discrete-time PI controller in parallel form.

Using C0 as an input causes pidtune to design a controller C of the same form, type,
and discretization method as C0. The display shows that the integral term of C uses the
Backward Euler integration method.

1 Functions — Alphabetical List

1-578

Specify a Trapezoidal integrator and compare the resulting controller.

C0_tr = pid(1,1,'Ts',0.1,'IFormula','Trapezoidal');

Ctr = pidtune(sys,C_tr)

Ctr =

 Ts*(z+1)

 Ki * --------

 2*(z-1)

 with Ki = 10.4, Ts = 0.1

Sample time: 0.1 seconds

Discrete-time I-only controller.

Alternatives

For interactive PID tuning, use the PID Tuner GUI (pidTuner). See “PID Controller
Design for Fast Reference Tracking” for an example of designing a controller using the
PID Tuner GUI.

The PID Tuner GUI cannot design controllers for multiple plants at once.

More About

Tips

By default, pidtune with the type input returns a pid controller in parallel form. To
design a controller in standard form, use a pidstd controller as input argument C0. For
more information about parallel and standard controller forms, see the pid and pidstd
reference pages.

Algorithms

Typical PID tuning objectives include:

• Closed-loop stability — The closed-loop system output remains bounded for bounded
input.

• Adequate performance — The closed-loop system tracks reference changes and
suppresses disturbances as rapidly as possible. The larger the loop bandwidth (the

 pidtune

1-579

first frequency at which the open-loop gain is unity), the faster the controller responds
to changes in the reference or disturbances in the loop.

• Adequate robustness — The loop design has enough phase margin and gain margin to
allow for modeling errors or variations in system dynamics.

The MathWorks algorithm for tuning PID controllers helps you meet these objectives
by automatically tuning the PID gains to balance performance (response time) and
robustness (stability margins).

By default, the algorithm chooses a crossover frequency (loop bandwidth) based upon the
plant dynamics, and designs for a target phase margin of 60°. If you specify the crossover
frequency using wc or the phase margin using pidtuneOptions, the algorithm
computes PID gains that best meet those targets.

References

Åström, K. J. and Hägglund, T. Advanced PID Control, Research Triangle Park, NC:
Instrumentation, Systems, and Automation Society, 2006.

See Also
pidtuneOptions | pid | pidstd | pidTuner

Tutorials
• Designing Cascade Control System with PI Controllers

1 Functions — Alphabetical List

1-580

pidtuneOptions
Define options for the pidtune command

Syntax
opt = pidtuneOptions

opt = pidtuneOptions(Name,Value)

Description
opt = pidtuneOptions returns the default option set for the pidtune command.

opt = pidtuneOptions(Name,Value) creates an option set with the options specified
by one or more Name,Value pair arguments.

Input Arguments

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

'PhaseMargin'

Target phase margin in degrees. pidtune attempts to design a controller such that the
phase margin is at least the value specified for PhaseMargin. The selected crossover
frequency could restrict the achievable phase margin. Typically, higher phase margin
improves stability and overshoot, but limits bandwidth and response speed.

Default: 60

'NumUnstablePoles'

Number of unstable poles in the plant. When your plant is a frd model or a state-space
model with internal delays, you must specify the number of open-loop unstable poles (if

 pidtuneOptions

1-581

any). Incorrect values might result in PID controllers that fail to stabilize the real plant.
(pidtune ignores this option for other model types.)

Unstable poles are poles located at:

• Re(s) > 0, for continuous-time plants
• |z| > 1, for discrete-time plants

A pure integrator in the plant (s = 0) or (|z| > 1) does not count as an unstable pole for
NumUnstablePoles. If your plant is a frd model of a plant with a pure integrator, for
best results, ensure that your frequency response data covers a low enough frequency to
capture the integrator slope.

Default: 0

Output Arguments

opt

Object containing the specified options for pidtune.

Examples

Tune a PI controller with a target phase margin of 45 degrees. Use pidtuneOptions to
specify the phase margin:

sys = tf(1,[1 3 3 1]);

opts = pidtuneOptions('PhaseMargin',45);

[C,info] = pidtune(sys,'pid',opts);

More About

Tips

• Use pidtuneOptions with the pidtune command to design a PID controller for a
specified phase margin.

• When using the pidtune command to design a PID controller for a plant with
unstable poles, if your plant model is one of the following:

1 Functions — Alphabetical List

1-582

• A frd model
• A ss model with internal delays that cannot be converted to I/O delays

then use pidtuneOptions to specify the number of unstable poles in the plant.

See Also
pidtune

 pidTuner

1-583

pidTuner
Open PID Tuner for PID tuning

Syntax

pidTuner(sys,type)

pidTuner(sys,Cbase)

pidTuner(sys)

pidTuner

Description

pidTuner(sys,type) launches the PID Tuner GUI and designs a controller of type
type for plant sys.

pidTuner(sys,Cbase) launches the GUI with a baseline controller Cbase so that you
can compare performance between the designed controller and the baseline controller.
If Cbase is a pid or pidstd controller object, the PID Tuner designs a controller of the
same form, type, and discrete integrator formulas as Cbase.

pidTuner(sys) designs a parallel-form PI controller.

pidTuner launches the GUI with default plant of 1 and proportional (P) controller of 1.

Input Arguments

sys

Plant model for controller design. sys can be:

• Any SISO LTI system (such as ss, tf, zpk, or frd).
• Any System Identification Toolbox SISO linear model (idarx, idfrd, idgrey,

idpoly, idproc, or idss.
• A continuous- or discrete-time model.

1 Functions — Alphabetical List

1-584

• Stable, unstable, or integrating. However, you might not be able to stabilize a plant
with unstable poles under PID control.

• A model that includes any type of time delay. A plant with long time delays, however,
might not achieve adequate performance under PID control.

If the plant has unstable poles, and sys is either:

• A frd model
• A ss model with internal time delays that cannot be converted to I/O delays

then you must specify the number of unstable poles in the plant. To do this, After

launching the PID Tuner GUI, click the button to open the Import Linear System
dialog box. In that dialog box, you can reimport sys, specifying the number of unstable
poles where prompted.

type

Controller type (actions) of the controller you are designing, specified as one of the
following strings:

String Type Continuous-Time
Controller Formula
(parallel form)

Discrete-Time Controller
Formula (parallel form,
ForwardEuler integration
method)

'p' proportional only Kp Kp

'i' integral only K

s

i
K

T

z
i

s

-1

'pi' proportional and
integral K

K

s
p

i
+ K K

T

z
p i

s
+

-1

'pd' proportional and
derivative

K K sp d+

K K
z

T
p d

s

+

-1

'pdf' proportional and
derivative with K

K s

T s
p

d

f

+

+1
K K

T
T

z

p d

f
s

+

+

-

1

1

 pidTuner

1-585

String Type Continuous-Time
Controller Formula
(parallel form)

Discrete-Time Controller
Formula (parallel form,
ForwardEuler integration
method)

first-order filter on
derivative term

'pid' proportional, integral,
and derivative K

K

s
K sp

i
d+ + K K

T

z
K

z

T
p i

s
d

s

+

-

+

-

1

1

'pidf' proportional, integral,
and derivative with
first-order filter on
derivative term

K
K

s

K s

T s
p

i d

f

+ +

+1
K K

T

z
K

T
T

z

p i
s

d

f
s

+

-

+

+

-

1

1

1

When you use the type input, the PID Tuner designs a controller in parallel form. If
you want to design a controller in standard form, Use the input Cbase instead of type,
or select Standard from the Form menu. For more information about parallel and
standard forms, see the pid and pidstd reference pages.

If sys is a discrete-time model with sampling time Ts, the PID Tuner designs a discrete-
time pid controller using the ForwardEuler discrete integrator formula. If you want to
design a controller having a different discrete integrator formula, use the input Cbase
instead of type or the Preferences dialog box. For more information about discrete
integrator formulas, see the pid and pidstd reference pages.

Cbase

A dynamic system representing a baseline controller, permitting comparison of the
performance of the designed controller to the performance of Cbase.

If Cbase is a pid or pidstd object, the PID Tuner also uses it to configure the type, form,
and discrete integrator formulas of the designed controller. The designed controller:

• Is the type represented by Cbase.
• Is a parallel-form controller, if Cbase is a pid controller object.
• Is a standard-form controller, if Cbase is a pidstd controller object.
• Has the same Iformula and Dformula values as Cbase. For more information about

Iformula and Dformula, see the pid and pidstd reference pages .

1 Functions — Alphabetical List

1-586

If Cbase is any other dynamic system, the PID Tuner designs a parallel-form PI
controller. You can change the controller form and type using the Form and Type menus
after launching the PID Tuner.

Examples

Interactive PID Tuning of Parallel-Form Controller

Launch the PID Tuner to design a parallel-form PIDF controller for a discrete-time plant:

Gc = zpk([],[-1 -1 -1],1);

Gd = c2d(Gc,0.1); % Create discrete-time plant

pidTuner(Gd,'pidf') % Launch PID Tuner

Interactive PID Tuning of Standard-Form Controller Using Integrator
Discretization Method

Design a standard-form PIDF controller using BackwardEuler discrete integrator
formula:

Gc = zpk([],[-1 -1 -1],1);

Gd = c2d(Gc,0.1); % Create discrete-time plant

% Create baseline controller.

Cbase = pidstd(1,2,3,4,'Ts',0.1,...

 'IFormula','BackwardEuler','DFormula','BackwardEuler')

pidTuner(Gd,Cbase) % Launch PID Tuner

The PID Tuner designs a controller for Gd having the same form, type, and discrete
integrator formulas as Cbase. For comparison, you can display the response plots of
Cbase with the response plots of the designed controller by clicking the Show baseline
checkbox on the PID Tuner GUI.

Alternatives

You can open PID Tuner from the MATLAB desktop, in the Apps tab. When you do so,
use the Plant menu in PID Tuner to specify your plant model.

 pidTuner

1-587

For PID tuning at the command line, use pidtune. The pidtune command can design a
controller for multiple plants at once.

More About

Tips

• The PID Tuner designs a controller in the feedforward path of a single control loop
with unit feedback:

sysCr y
+

-

u

• The PID Tuner has a default target phase margin of 60 degrees and automatically
tunes the PID gains to balance performance (response time) and robustness (stability
margins). Use the Response time or Bandwidth and Phase Margin sliders to tune
the controller's performance to your requirements. Increasing performance typically
decreases robustness, and vice versa.

• Select response plots from the Response menu to analyze the controller's
performance.

• If you provide Cbase, check Show baseline to display the response of the baseline
controller.

• For more detailed information about using the PID Tuner, see “Designing PID
Controllers with the PID Tuner”.

Algorithms

Typical PID tuning objectives include:

• Closed-loop stability — The closed-loop system output remains bounded for bounded
input.

• Adequate performance — The closed-loop system tracks reference changes and
suppresses disturbances as rapidly as possible. The larger the loop bandwidth (the
first frequency at which the open-loop gain is unity), the faster the controller responds
to changes in the reference or disturbances in the loop.

• Adequate robustness — The loop design has enough phase margin and gain margin to
allow for modeling errors or variations in system dynamics.

1 Functions — Alphabetical List

1-588

The MathWorks algorithm for tuning PID controllers helps you meet these objectives
by automatically tuning the PID gains to balance performance (response time) and
robustness (stability margins).

By default, the algorithm chooses a crossover frequency (loop bandwidth) based upon
the plant dynamics, and designs for a target phase margin of 60°. If you change the
bandwidth or phase margin using the sliders in the PID Tuner GUI, the algorithm
computes PID gains that best meet those targets.
• “Designing PID Controllers with the PID Tuner”

References

Åström, K. J. and Hägglund, T. Advanced PID Control, Research Triangle Park, NC:
Instrumentation, Systems, and Automation Society, 2006.

See Also
pid | pidstd | pidtune

Tutorials
• “Designing PID for Disturbance Rejection with PID Tuner”
• “Tune PI Controller to Balance Tracking and Disturbance Rejection Performance”

 place

1-589

place
Pole placement design

Syntax
K = place(A,B,p)

[K,prec,message] = place(A,B,p)

Description
Given the single- or multi-input system

&x Ax Bu= +

and a vector p of desired self-conjugate closed-loop pole locations, place computes a gain
matrix K such that the state feedback u = –Kx places the closed-loop poles at the locations
p. In other words, the eigenvalues of A – BK match the entries of p (up to the ordering).

K = place(A,B,p) places the desired closed-loop poles p by computing a state-feedback
gain matrix K. All the inputs of the plant are assumed to be control inputs. The length of
p must match the row size of A. place works for multi-input systems and is based on the
algorithm from [1]. This algorithm uses the extra degrees of freedom to find a solution
that minimizes the sensitivity of the closed-loop poles to perturbations in A or B.

[K,prec,message] = place(A,B,p) returns prec, an estimate of how closely the
eigenvalues of A – BK match the specified locations p (prec measures the number of
accurate decimal digits in the actual closed-loop poles). If some nonzero closed-loop pole is
more than 10% off from the desired location, message contains a warning message.

You can also use place for estimator gain selection by transposing the A matrix and
substituting C' for B.

l = place(A',C',p).'

Examples
Pole Placement Design

1 Functions — Alphabetical List

1-590

Consider a state-space system (a,b,c,d) with two inputs, three outputs, and three
states. You can compute the feedback gain matrix needed to place the closed-loop poles at
p = [-1 -1.23 -5.0] by

p = [-1 -1.23 -5.0];

K = place(a,b,p)

More About

Algorithms

place uses the algorithm of [1] which, for multi-input systems, optimizes the choice of
eigenvectors for a robust solution.

In high-order problems, some choices of pole locations result in very large gains. The
sensitivity problems attached with large gains suggest caution in the use of pole
placement techniques. See [2] for results from numerical testing.

References

[1] Kautsky, J., N.K. Nichols, and P. Van Dooren, "Robust Pole Assignment in Linear
State Feedback," International Journal of Control, 41 (1985), pp. 1129-1155.

[2] Laub, A.J. and M. Wette, Algorithms and Software for Pole Assignment and
Observers, UCRL-15646 Rev. 1, EE Dept., Univ. of Calif., Santa Barbara, CA,
Sept. 1984.

See Also
lqr | rlocus

 pole

1-591

pole
Compute poles of dynamic system

Syntax

pole(sys)

Description

pole(sys) computes the poles p of the SISO or MIMO dynamic system model sys.

If sys has internal delays, poles are obtained by first setting all internal delays to zero
(creating a zero-order Padé approximation) so that the system has a finite number of
zeros. For some systems, setting delays to 0 creates singular algebraic loops, which result
in either improper or ill-defined, zero-delay approximations. For these systems, pole
returns an error. This error does not imply a problem with the model sys itself.

Limitations

Multiple poles are numerically sensitive and cannot be computed to high accuracy. A pole
λ with multiplicity m typically gives rise to a cluster of computed poles distributed on a
circle with center λ and radius of order

ρ ε≈ 1/m

where ε is the relative machine precision (eps).

More About

Algorithms

For state-space models, the poles are the eigenvalues of the A matrix, or the generalized
eigenvalues of A – λE in the descriptor case.

1 Functions — Alphabetical List

1-592

For SISO transfer functions or zero-pole-gain models, the poles are simply the
denominator roots (see roots).

For MIMO transfer functions (or zero-pole-gain models), the poles are computed as
the union of the poles for each SISO entry. If some columns or rows have a common
denominator, the roots of this denominator are counted only once.

See Also
pzmap | zero | damp | esort | dsort

 prescale

1-593

prescale
Optimal scaling of state-space models

Syntax

scaledsys = prescale(sys)

scaledsys = prescale(sys,focus)

[scaledsys,info] = prescale(...)

prescale(sys)

Description

scaledsys = prescale(sys) scales the entries of the state vector of a state-space
model sys to maximize the accuracy of subsequent frequency-domain analysis. The
scaled model scaledsys is equivalent to sys.

scaledsys = prescale(sys,focus) specifies a frequency interval focus =
{fmin,fmax} (in rad/TimeUnit, where TimeUnit is the system's time units specified in
the TimeUnit property of sys) over which to maximize accuracy. This is useful when sys
has a combination of slow and fast dynamics and scaling cannot achieve high accuracy
over the entire dynamic range. By default, prescale attempts to maximize accuracy in
the frequency band with dominant dynamics.

[scaledsys,info] = prescale(...) also returns a structure info with the fields
shown in the following table.

SL Left scaling factors
SR Right scaling factors
Freqs Frequencies used to test accuracy
RelAcc Guaranteed relative accuracy at these

frequencies

The test frequencies lie in the frequency interval focus when specified. The scaled state-
space matrices are

1 Functions — Alphabetical List

1-594

A T AT

B T B

C CT

E T ET

s L R

s L

s R

s L R

=

=

=

=

where TL = diag(SL) and TR = diag(SR). TL and TR are inverse of each other for explicit
models (E = []).

prescale(sys) opens an interactive GUI for:

• Visualizing accuracy trade-offs for sys.
• Adjusting the frequency interval where the accuracy of sys is maximized.

For more information on scaling and using the Scaling Tool GUI, see “Scaling State-
Space Models”.

 prescale

1-595

More About

Tips

Most frequency-domain analysis commands perform automatic scaling equivalent to
scaledsys = prescale(sys).

You do not need to scale for time-domain simulations and doing so may invalidate the
initial condition x0 used in initial and lsim simulations.

See Also
ss

1 Functions — Alphabetical List

1-596

pzmap
Pole-zero plot of dynamic system

Syntax
pzmap(sys)

pzmap(sys1,sys2,...,sysN)

[p,z] = pzmap(sys)

Description
pzmap(sys) creates a pole-zero plot of the continuous- or discrete-time “dynamic system
model” sys. For SISO systems, pzmap plots the transfer function poles and zeros. For
MIMO systems, it plots the system poles and transmission zeros. The poles are plotted as
x's and the zeros are plotted as o's.

pzmap(sys1,sys2,...,sysN) creates the pole-zero plot of multiple models on a single
figure. The models can have different numbers of inputs and outputs and can be a mix of
continuous and discrete systems.

[p,z] = pzmap(sys) returns the system poles and (transmission) zeros in the column
vectors p and z. No plot is drawn on the screen.

You can use the functions sgrid or zgrid to plot lines of constant damping ratio and
natural frequency in the s- or z-plane.

Examples

Example 1

Pole-Zero Plot of Dynamic System

Plot the poles and zeros of the continuous-time system

H s
s s

s s
() =

+ +

+ +

2 5 1

2 3

2

2

 pzmap

1-597

H = tf([2 5 1],[1 2 3]); sgrid

pzmap(H)

grid on

Example 2

Plot the pzmap for a 2-input-output discrete-time IDSS model.

A = [0.1 0; 0.2 0.9]; B = [.1 .2; 0.1 .02]; C = [10 20; 2 -5]; D = [1 2; 0 1];

sys = idss(A,B,C,D, 'Ts', 0.1);

More About

Tips

You can change the properties of your plot, for example the units. For information on the
ways to change properties of your plots, see “Ways to Customize Plots”.

1 Functions — Alphabetical List

1-598

Algorithms

pzmap uses a combination of pole and zero.

See Also
pole | sgrid | zgrid | zero | iopzmap | damp | esort | dsort | rlocus

 pzplot

1-599

pzplot
Pole-zero map of dynamic system model with plot customization options

Syntax

h = pzplot(sys)

pzplot(sys1,sys2,...)

pzplot(AX,...)

pzplot(..., plotoptions)

Description

h = pzplot(sys) computes the poles and (transmission) zeros of the “dynamic system
model” sys and plots them in the complex plane. The poles are plotted as x's and the
zeros are plotted as o's. It also returns the plot handle h. You can use this handle to
customize the plot with the getoptions and setoptions commands. Type

help pzoptions

for a list of available plot options.

pzplot(sys1,sys2,...) shows the poles and zeros of multiple models sys1,sys2,...
on a single plot. You can specify distinctive colors for each model, as in

pzplot(sys1,'r',sys2,'y',sys3,'g')

pzplot(AX,...) plots into the axes with handle AX.

pzplot(..., plotoptions) plots the poles and zeros with the options specified in
plotoptions. Type

help pzoptions

for more detail.

The function sgrid or zgrid can be used to plot lines of constant damping ratio and
natural frequency in the s- or z-plane.

1 Functions — Alphabetical List

1-600

For arrays sys of dynamic system models, pzmap plots the poles and zeros of each model
in the array on the same diagram.

Examples

Use the plot handle to change the color of the plot's title.

sys = rss(3,2,2);

h = pzplot(sys);

p = getoptions(h); % Get options for plot.

p.Title.Color = [1,0,0]; % Change title color in options.

setoptions(h,p); % Apply options to plot.

More About

Tips

You can change the properties of your plot, for example the units. For information on the
ways to change properties of your plots, see “Ways to Customize Plots”.

See Also
pzmap | setoptions | iopzplot | getoptions

 pzoptions

1-601

pzoptions
Create list of pole/zero plot options

Syntax

P = pzoptions

P = pzoption('cstprefs')

Description

P = pzoptions returns a list of available options for pole/zero plots (pole/zero, input-
output pole/zero and root locus) with default values set.. You can use these options to
customize the pole/zero plot appearance from the command line.

P = pzoption('cstprefs') initializes the plot options with the options you selected
in the Control System Toolbox Preferences Editor. For more information about the editor,
see “Toolbox Preferences Editor” in the User's Guide documentation.

This table summarizes the available pole/zero plot options.

Option Description

Title, XLabel, YLabel Label text and style
TickLabel Tick label style
Grid Show or hide the grid

Specified as one of the following strings:
'off' | 'on'
Default: 'off'

XlimMode, YlimMode Limit modes
Xlim, Ylim Axes limits
IOGrouping Grouping of input-output pairs

Specified as one of the following strings:
'none' |'inputs'|'output'|'all'
Default: 'none'

InputLabels, OutputLabels Input and output label styles

1 Functions — Alphabetical List

1-602

Option Description

InputVisible, OutputVisible Visibility of input and output channels

 pzoptions

1-603

Option Description

FreqUnits Frequency units, specified as one of the
following strings:

• 'Hz'

• 'rad/second'

• 'rpm'

• 'kHz'

• 'MHz'

• 'GHz'

• 'rad/nanosecond'

• 'rad/microsecond'

• 'rad/millisecond'

• 'rad/minute'

• 'rad/hour'

• 'rad/day'

• 'rad/week'

• 'rad/month'

• 'rad/year'

• 'cycles/nanosecond'

• 'cycles/microsecond'

• 'cycles/millisecond'

• 'cycles/hour'

• 'cycles/day'

• 'cycles/week'

• 'cycles/month'

• 'cycles/year'

Default: 'rad/s'

You can also specify 'auto' which uses
frequency units rad/TimeUnit relative

1 Functions — Alphabetical List

1-604

Option Description

to system time units specified in the
TimeUnit property. For multiple systems
with different time units, the units of the
first system are used.

TimeUnits Time units, specified as one of the following
strings:

• 'nanoseconds'

• 'microseconds'

• 'milliseconds'

• 'seconds'

• 'minutes'

• 'hours'

• 'days'

• 'weeks'

• 'months'

• 'years'

Default: 'seconds'

You can also specify 'auto' which uses
time units specified in the TimeUnit
property of the input system. For multiple
systems with different time units, the units
of the first system is used.

ConfidenceRegionNumberSD Number of standard deviations to use
when displaying the confidence region
characteristic for identified models (valid
only iopzplot).

Examples

In this example, you enable the grid option before creating a plot.

 pzoptions

1-605

 P = pzoptions; % Create set of plot options P

 P.Grid = 'on'; % Set the grid to on in options

 h = rlocusplot(tf(1,[1,.2,1,0]),P);

The following root locus plot is created with the grid enabled.

See Also
iopzplot | pzplot | setoptions | getoptions

1 Functions — Alphabetical List

1-606

realp

Real tunable parameter

Syntax

p = realp(paramname,initvalue)

Description

p = realp(paramname,initvalue) creates a tunable real-valued parameter with
name specified by the string paramname and initial value initvalue. Tunable real
parameters can be scalar- or matrix- valued.

Input Arguments

paramname

String specifying the name of the realp parameter p. This input argument sets the
value of the Name property of p.

initvalue

Initial numeric value of the parameter p. initvalue can be a real scalar value or a 2-
dimensional matrix.

Output Arguments

p

realp parameter object.

 realp

1-607

Properties

Name

String containing the name of the realp parameter object. The value of Name is set by
the paramname input argument to realp and cannot be changed.

Value

Value of the tunable parameter.

Value can be a real scalar value or a 2-dimensional matrix. The initial value is set by the
initvalue input argument. The dimensions of Value are fixed on creation of the realp
object.

Minimum

Lower bound for the parameter value. The dimension of the Minimum property matches
the dimension of the Value property.

For matrix-valued parameters, use indexing to specify lower bounds on individual
elements:

 p = realp('K',eye(2));

 p.Minimum([1 4]) = -5;

Use scalar expansion to set the same lower bound for all matrix elements:

p.Minimum = -5;

Default: -Inf for all entries

Maximum

Upper bound for the parameter value. The dimension of the Maximum property matches
the dimension of the Value property.

For matrix-valued parameters, use indexing to specify upper bounds on individual
elements:

 p = realp('K',eye(2));

 p.Maximum([1 4]) = 5;

Use scalar expansion to set the same upper bound for all matrix elements:

1 Functions — Alphabetical List

1-608

p.Maximum = 5;

Default: Inf for all entries

Free

Boolean value specifying whether the parameter is free to be tuned. Set the Free
property to 1 (true) for tunable parameters, and 0 (false) for fixed parameters.

The dimension of the Free property matches the dimension of the Value property.

Default: 1 (true) for all entries

Examples

Tunable Low-Pass Filter

This example shows how to create the low-pass filter F = a/(s + a) with one tunable
parameter a.

You cannot use ltiblock.tf to represent F, because the numerator and denominator
coefficients of an ltiblock.tf block are independent. Instead, construct F using the
tunable real parameter object realp.

1 Create a tunable real parameter.

a = realp('a',10);

The realp object a is a tunable parameter with initial value 10.
2 Use tf to create the tunable filter F:

F = tf(a,[1 a]);

F is a genss object which has the tunable parameter a in its Blocks property. You can
connect F with other tunable or numeric models to create more complex models of control
systems. For an example, see “Control System with Tunable Components”.

Parametric Diagonal Matrix

This example shows how to create a parametric matrix whose off-diagonal terms are
fixed to zero, and whose diagonal terms are tunable parameters.

 realp

1-609

1 Create a parametric matrix whose initial value is the identity matrix.

p = realp('P',eye(2));

p is a 2-by-2 parametric matrix. Because the initial value is the identity matrix, the
off-diagonal initial values are zero.

2 Fix the values of the off-diagonal elements by setting the Free property to false.

p.Free(1,2) = false;

p.Free(2,1) = false;

More About

Tips

• Use arithmetic operators (+, -, *, /, \, and ^) to combine realp objects into rational
expressions or matrix expressions. You can use the resulting expressions in model-
creation functions such as tf, zpk, and ss to create tunable models. For more
information about tunable models, see “Models with Tunable Coefficients” in the
Control System Toolbox User's Guide.

• “Models with Tunable Coefficients”

See Also
genss | genmat | tf | ss

1 Functions — Alphabetical List

1-610

reg

Form regulator given state-feedback and estimator gains

Syntax

rsys = reg(sys,K,L)

rsys = reg(sys,K,L,sensors,known,controls)

Description

rsys = reg(sys,K,L) forms a dynamic regulator or compensator rsys given a
state-space model sys of the plant, a state-feedback gain matrix K, and an estimator
gain matrix L. The gains K and L are typically designed using pole placement or LQG
techniques. The function reg handles both continuous- and discrete-time cases.

This syntax assumes that all inputs of sys are controls, and all outputs are measured.
The regulator rsys is obtained by connecting the state-feedback law u = –Kx and the
state estimator with gain matrix L (see estim). For a plant with equations

&x Ax Bu

y Cx Du

= +
= +

this yields the regulator

ˆ () ˆ

ˆ

&x A LC B LD K x Ly

u Kx

= − − −[] +
= −

This regulator should be connected to the plant using positive feedback.

 reg

1-611

rsys = reg(sys,K,L,sensors,known,controls) handles more general regulation
problems where:

• The plant inputs consist of controls u, known inputs ud, and stochastic inputs w.
• Only a subset y of the plant outputs is measured.

The index vectors sensors, known, and controls specify y, ud, and u as subsets of the
outputs and inputs of sys. The resulting regulator uses [ud ; y] as inputs to generate the
commands u (see next figure).

1 Functions — Alphabetical List

1-612

Examples

Given a continuous-time state-space model

sys = ss(A,B,C,D)

with seven outputs and four inputs, suppose you have designed:

• A state-feedback controller gain K using inputs 1, 2, and 4 of the plant as control
inputs

• A state estimator with gain L using outputs 4, 7, and 1 of the plant as sensors, and
input 3 of the plant as an additional known input

You can then connect the controller and estimator and form the complete regulation
system by

controls = [1,2,4];

sensors = [4,7,1];

known = [3];

regulator = reg(sys,K,L,sensors,known,controls)

See Also
estim | kalman | lqr | dlqr | place | lqgreg

 replaceBlock

1-613

replaceBlock
Replace or update Control Design Blocks in Generalized LTI model

Syntax
Mnew = replaceBlock(M,Block1,Value1,...,BlockN,ValueN)

Mnew = replaceBlock(M,blockvalues)

Mnew = replaceBlock(...,mode)

Description
Mnew = replaceBlock(M,Block1,Value1,...,BlockN,ValueN) replaces
the “Control Design Blocks” Block1,...,BlockN of M with the specified values
Value1,...,ValueN. M is a “Generalized LTI model” or a “Generalized matrix”.

Mnew = replaceBlock(M,blockvalues) specifies the block names and replacement
values as field names and values of the structure blockvalues.

Mnew = replaceBlock(...,mode) performs block replacement on an array of models
M using the substitution mode specified by the string mode.

Input Arguments
M

“Generalized LTI model”, “Generalized matrix”, or array of such models.

Block1,...,BlockN

Names of “Control Design Blocks” in M. The replaceBlock command replaces each
listed block of M with the corresponding values Value1,...,ValueN that you supply.

If a specified Block is not a block of M, replaceBlock that block and the corresponding
value.

Value1,...,ValueN

Replacement values for the corresponding blocks Block1,...,BlockN.

1 Functions — Alphabetical List

1-614

The replacement value for a block can be any value compatible with the size of the block,
including a different Control Design Block, a numeric matrix, or an LTI model. If any
value is [], the corresponding block is replaced by its nominal (current) value.

blockvalues

Structure specifying blocks of M to replace and the values with which to replace those
blocks.

The field names of blockvalues match names of Control Design Blocks of M. Use the
field values to specify the replacement values for the corresponding blocks of M. The
replacement values may be numeric values, Numeric LTI models, Control Design Blocks,
or Generalized LTI models.

mode

String specifying the block replacement mode for an input array M of Generalized
matrices or LTI models.

mode can take the following values:

• '-once' (default) — Vectorized block replacement across the model array M. Each
block is replaced by a single value, but the value may change from model to model
across the array.

For vectorized block replacement, use a structure array for the input blockvalues,
or cell arrays for the Value1,...,ValueN inputs. For example, if M is a 2-by-3 array of
models:

• Mnew = replaceBlock(M,blockvalues,'-once'), where blockvalues is a 2-
by-3 structure array, specifies one set of block values blockvalues(k) for each
model M(:,:,k) in the array.

• Mnew = replaceBlock(M,Block,Value,'-once'), where Value is a 2-by-3
cell array, replaces Block by Value{k} in the model M(:,:,k) in the array.

• '-batch' — Batch block replacement. Each block is replaced by an array of values,
and the same array of values is used for each model in M. The resulting array of
model Mnew is of size [size(M) Asize], where Asize is the size of the replacement
value.

When the input M is a single model, '-once' and '-batch' return identical results.

Default: '-once'

 replaceBlock

1-615

Output Arguments

Mnew

Matrix or linear model or matrix where the specified blocks are replaced by the specified
replacement values.

Mnew is a numeric array or numeric LTI model when all the specified replacement
values are numeric values or numeric LTI models.

Examples

Replace Control Design Block with Numeric Values

This example shows how to replace a tunable PID controller (ltiblock.pid) in a
Generalized LTI model by a pure gain, a numeric PI controller, or the current value of
the tunable controller.

1 Create a Generalized LTI model of the following system:

r
-

G(s)C(s) y
+

where the plant G s
s

s

() =
-()

+()

1

1
3

, and C is a tunable PID controller.

G = zpk(1,[-1,-1,-1],1);

C = ltiblock.pid('C','pid');

Try = feedback(G*C,1)

2 Replace C by a pure gain of 5.

T1 = replaceBlock(Try,'C',5);

T1 is a ss model that equals feedback(G*5,1).
3 Replace C by a PI controller with proportional gain of 5 and integral gain of 0.1.

1 Functions — Alphabetical List

1-616

C2 = pid(5,0.1);

T2 = replaceBlock(Try,'C',C2);

T2 is a ss model that equals feedback(G*C2,1).
4 Replace C by its current (nominal) value.

T3 = replaceBlock(Try,'C',[]);

T3 is a ss model where C has been replaced by getValue(C).

Study Parameter Variation by Sampling Tunable Model

This example shows how to sample a parametric model of a second-order filter across a
grid of parameter values using replaceBlock.

Consider the second-order filter represented by:

Sample this filter at varying values of the damping constant and the natural frequency
. Create a parametric model of the filter by using tunable elements for and .

wn = realp('wn',3);

zeta = realp('zeta',0.8);

F = tf(wn^2,[1 2*zeta*wn wn^2])

F =

 Generalized continuous-time state-space model with 1 outputs, 1 inputs, 2 states, and the following blocks:

 wn: Scalar parameter, 5 occurrences.

 zeta: Scalar parameter, 1 occurrences.

Type "ss(F)" to see the current value, "get(F)" to see all properties, and "F.Blocks" to interact with the blocks.

F is a genss model with two tunable Control Design Blocks, the realp blocks wn and
zeta. The blocks wn and zeta have initial values of 3 and 0.8, respectively.

Sample F over a 2-by-3 grid of (wn, zeta) values.

 replaceBlock

1-617

wnvals = [3;5];

zetavals = [0.6 0.8 1.0];

Fsample = replaceBlock(F,'wn',wnvals,'zeta',zetavals);

Fsample is a 2-by-3 array of state-space models. Each entry in the array is a state-space
model that represents F evaluated at the corresponding (wn, zeta) pair. For example,
Fsample(:,:,2,3) has wn = 5 and zeta = 1.0.

Examine the step response of Fsample.

stepplot(Fsample)

The step response plots show the variation in the natural frequency and damping
constant across the six models in the array Fsample.

1 Functions — Alphabetical List

1-618

You can set the SamplingGrid property of the model array to help keep track of which
set of parameter values corresponds to which entry in the array. To do so, create a grid of
parameter values that matches the dimensions of the array. Then, assign these values to
Fsample.SamplingGrid with the parameter names.

[wngrid,zetagrid] = ndgrid(wnvals,zetavals);

Fsample.SamplingGrid = struct('wn',wngrid,'zeta',zetagrid);

When you display Fsample, the parameter values in Fsample.SamplingGrid are
displayed along with the each transfer function in the array.

More About

Tips

• Use replaceBlock to perform parameter studies by sampling Generalized LTI
models across a grid of parameters, or to evaluate tunable models for specific values of
the tunable blocks. See “Examples” on page 1-615.

• “Generalized Matrices”
• “Generalized and Uncertain LTI Models”
• “Models with Tunable Coefficients”

See Also
getValue | genss | genmat | nblocks

 repsys

1-619

repsys

Replicate and tile models

Syntax

rsys = repsys(sys,[M N])

rsys = repsys(sys,N)

rsys = repsys(sys,[M N S1,...,Sk])

Description

rsys = repsys(sys,[M N]) replicates the model sys into an M-by-N tiling pattern.
The resulting model rsys has size(sys,1)*M outputs and size(sys,2)*N inputs.

rsys = repsys(sys,N) creates an N-by-N tiling.

rsys = repsys(sys,[M N S1,...,Sk]) replicates and tiles sys along both
I/O and array dimensions to produce a model array. The indices S specify the
array dimensions. The size of the array is [size(sys,1)*M, size(sys,2)*N,
size(sys,3)*S1, ...].

Input Arguments

sys

Model to replicate.

M

Number of replications of sys along the output dimension.

N

Number of replications of sys along the input dimension.

1 Functions — Alphabetical List

1-620

S

Numbers of replications of sys along array dimensions.

Output Arguments

rsys

Model having size(sys,1)*M outputs and size(sys,2)*N inputs.

If you provide array dimensions S1,...,Sk, rsys is an array of dynamic systems which
each have size(sys,1)*M outputs and size(sys,2)*N inputs. The size of rsys is
[size(sys,1)*M, size(sys,2)*N, size(sys,3)*S1, ...].

Examples

Replicate a SISO transfer function to create a MIMO transfer function that has three
inputs and two outputs.

sys = tf(2,[1 3]);

rsys = repsys(sys,[2 3]);

The preceding commands produce the same result as:

sys = tf(2,[1 3]);

rsys = [sys sys sys; sys sys sys];

Replicate a SISO transfer function into a 3-by-4 array of two-input, one-output transfer
functions.

sys = tf(2,[1 3]);

rsys = repsys(sys, [1 2 3 4]);

To check the size of rsys, enter:

size(rsys)

This command produces the result:

3x4 array of transfer functions.

Each model has 1 outputs and 2 inputs.

 repsys

1-621

More About

Tips

rsys = repsys(sys,N) produces the same result as rsys = repsys(sys,[N N]).
To produce a diagonal tiling, use rsys = sys*eye(N).

See Also
append

1 Functions — Alphabetical List

1-622

reshape
Change shape of model array

Syntax

sys = reshape(sys,s1,s2,...,sk)

sys = reshape(sys,[s1 s2 ... sk])

Description

sys = reshape(sys,s1,s2,...,sk) (or, equivalently, sys = reshape(sys,[s1
s2 ... sk])) reshapes the LTI array sys into an s1-by-s2-by-...-by-sk model array.
With either syntax, there must be s1*s2*...*sk models in sys to begin with.

Examples

Change the shape of a model array from 2x3 to 6x1.

% Create a 2x3 model array.

sys = rss(4,1,1,2,3);

% Confirm the size of the array.

size(sys)

This input produces the following output:

2x3 array of state-space models

Each model has 1 output, 1 input, and 4 states.

Change the shape of the array.

sys1 = reshape(sys,6,1);

size(sys1)

This input produces the following output:

6x1 array of state-space models

Each model has 1 output, 1 input, and 4 states.

 reshape

1-623

See Also
size | ndims

1 Functions — Alphabetical List

1-624

rlocus

Root locus plot of dynamic system

Syntax

rlocus(sys)

rlocus(sys1,sys2,...)

[r,k] = rlocus(sys)

r = rlocus(sys,k)

Description

rlocus computes the root locus of a SISO open-loop model. The root locus gives the
closed-loop pole trajectories as a function of the feedback gain k (assuming negative
feedback). Root loci are used to study the effects of varying feedback gains on closed-
loop pole locations. In turn, these locations provide indirect information on the time and
frequency responses.

rlocus(sys) calculates and plots the root locus of the open-loop SISO model sys. This
function can be applied to any of the following negative feedback loops by setting sys
appropriately.

 rlocus

1-625

If sys has transfer function

h s
n s

d s
() =

()

()

the closed-loop poles are the roots of

d s kn s() ()+ = 0

rlocus adaptively selects a set of positive gains k to produce a smooth plot.
Alternatively,

rlocus(sys,k)

uses the user-specified vector k of gains to plot the root locus.

rlocus(sys1,sys2,...) draws the root loci of multiple LTI models sys1, sys2,...
on a single plot. You can specify a color, line style, and marker for each model, as in

rlocus(sys1,'r',sys2,'y:',sys3,'gx').

[r,k] = rlocus(sys) and r = rlocus(sys,k) return the vector k of selected gains
and the complex root locations r for these gains. The matrix r has length(k) columns
and its jth column lists the closed-loop roots for the gain k(j).

1 Functions — Alphabetical List

1-626

Examples

Root Locus Plot of Dynamic System

Plot the root-locus of the following system.

h = tf([2 5 1],[1 2 3]);

rlocus(h)

You can use the right-click menu for rlocus to add grid lines, zoom in or out, and invoke
the Property Editor to customize the plot. Also, click anywhere on the curve to activate a

 rlocus

1-627

data marker that displays the gain value, pole, damping, overshoot, and frequency at the
selected point.

More About

Tips

You can change the properties of your plot, for example the units. For information on the
ways to change properties of your plots, see “Ways to Customize Plots”.

See Also
pole | pzmap

1 Functions — Alphabetical List

1-628

rlocusplot
Plot root locus and return plot handle

Syntax

h = rlocusplot(sys)

rlocusplot(sys,k)

rlocusplot(sys1,sys2,...)

rlocusplot(AX,...)

rlocusplot(..., plotoptions)

Description

h = rlocusplot(sys) computes and plots the root locus of the single-input, single-
output LTI model sys. It also returns the plot handle h. You can use this handle to
customize the plot with the getoptions and setoptions commands. Type

help pzoptions

for a list of available plot options.

See rlocus for a discussion of the feedback structure and algorithms used to calculate
the root locus.

rlocusplot(sys,k) uses a user-specified vector k of gain values.

rlocusplot(sys1,sys2,...) draws the root loci of multiple LTI models sys1,
sys2,... on a single plot. You can specify a color, line style, and marker for each model, as
in

rlocusplot(sys1,'r',sys2,'y:',sys3,'gx')

rlocusplot(AX,...) plots into the axes with handle AX.

rlocusplot(..., plotoptions) plots the root locus with the options specified in
plotoptions. Type

help pzoptions

 rlocusplot

1-629

for more details.

Examples

Use the plot handle to change the title of the plot.

sys = rss(3);

h = rlocusplot(sys);

p = getoptions(h); % Get options for plot.

p.Title.String = 'My Title'; % Change title in options.

setoptions(h,p); % Apply options to plot.

More About

Tips

You can change the properties of your plot, for example the units. For information on the
ways to change properties of your plots, see “Ways to Customize Plots”.

See Also
getoptions | rlocus | pzoptions | setoptions

1 Functions — Alphabetical List

1-630

rss
Generate random continuous test model

Syntax

rss(n)

rss(n,p)

rss(n,p,m,s1,...,sn)

Description

rss(n) generates an n-th order model with one input and one output and returns the
model in the state-space object sys. The poles of sys are random and stable with the
possible exception of poles at s = 0 (integrators).

rss(n,p) generates an nth order model with one input and p outputs, and
rss(n,p,m) generates an n-th order model with m inputs and p outputs. The output
sys is always a state-space model.

rss(n,p,m,s1,...,sn) generates an s1-by-...-by-sn array of n-th order state-space
models with m inputs and p outputs.

Use tf, frd, or zpk to convert the state-space object sys to transfer function, frequency
response, or zero-pole-gain form.

Examples

Obtain a random continuous LTI model with three states, two inputs, and two outputs by
typing

sys = rss(3,2,2)

a =

 x1 x2 x3

 x1 -0.54175 0.09729 0.08304

 x2 0.09729 -0.89491 0.58707

 x3 0.08304 0.58707 -1.95271

 rss

1-631

b =

 u1 u2

 x1 -0.88844 -2.41459

 x2 0 -0.69435

 x3 -0.07162 -1.39139

c =

 x1 x2 x3

 y1 0.32965 0.14718 0

 y2 0.59854 -0.10144 0.02805

d =

 u1 u2

 y1 -0.87631 -0.32758

 y2 0 0

Continuous-time system.

See Also
drss | frd | tf | zpk

1 Functions — Alphabetical List

1-632

series

Series connection of two models

Syntax

series

sys = series(sys1,sys2)

sys = series(sys1,sys2,outputs1,inputs2)

Description

series connects two model objects in series. This function accepts any type of model.
The two systems must be either both continuous or both discrete with identical sample
time. Static gains are neutral and can be specified as regular matrices.

sys = series(sys1,sys2) forms the basic series connection shown below.

This command is equivalent to the direct multiplication

sys = sys2 * sys1

sys = series(sys1,sys2,outputs1,inputs2) forms the more general series
connection.

 series

1-633

The index vectors outputs1 and inputs2 indicate which outputs y1 of sys1 and which
inputs u2 of sys2 should be connected. The resulting model sys has u as input and y as
output.

Examples

Consider a state-space system sys1 with five inputs and four outputs and another
system sys2 with two inputs and three outputs. Connect the two systems in series by
connecting outputs 2 and 4 of sys1 with inputs 1 and 2 of sys2.

outputs1 = [2 4];

inputs2 = [1 2];

sys = series(sys1,sys2,outputs1,inputs2)

See Also
append | feedback | parallel

1 Functions — Alphabetical List

1-634

set
Set or modify model properties

Syntax

set(sys,'Property',Value)

set(sys,'Property1',Value1,'Property2',Value2,...)

sysnew = set(___)

set(sys,'Property')

Description

set is used to set or modify the properties of a dynamic system model. Like its Handle
Graphics® counterpart, set uses property name/property value pairs to update property
values.

set(sys,'Property',Value) assigns the value Value to the property of the model
sys specified by the string 'Property'. This string can be the full property name (for
example, 'UserData') or any unambiguous case-insensitive abbreviation (for example,
'user'). The specified property must be compatible with the model type. For example,
if sys is a transfer function, Variable is a valid property but StateName is not. For a
complete list of available system properties for any linear model type, see the reference
page for that model type. This syntax is equivalent to sys.Property = Value.

set(sys,'Property1',Value1,'Property2',Value2,...) sets multiple property
values with a single statement. Each property name/property value pair updates one
particular property.

sysnew = set(___) returns the modified dynamic system model, and can be used
with any of the previous syntaxes.

set(sys,'Property') displays help for the property specified by 'Property'.

Examples

Consider the SISO state-space model created by

 set

1-635

sys = ss(1,2,3,4);

You can add an input delay of 0.1 second, label the input as torque, reset the D matrix
to zero, and store its DC gain in the 'Userdata' property by
set(sys,'inputd',0.1,'inputn','torque','d',0,'user',dcgain(sys))

Note that set does not require any output argument. Check the result with get by
typing

get(sys)

 a: 1

 b: 2

 c: 3

 d: 0

 e: []

 StateName: {''}

 InternalDelay: [0x1 double]

 Ts: 0

 InputDelay: 0.1

 OutputDelay: 0

 InputName: {'torque'}

 OutputName: {''}

 InputGroup: [1x1 struct]

 OutputGroup: [1x1 struct]

 Name: ''

 Notes: {}

 UserData: -2

More About
Tips

For discrete-time transfer functions, the convention used to represent the numerator and
denominator depends on the choice of variable (see tf for details). Like tf, the syntax
for set changes to remain consistent with the choice of variable. For example, if the
Variable property is set to 'z' (the default),

set(h,'num',[1 2],'den',[1 3 4])

produces the transfer function

h z
z

z z
() =

+

+ +

2

3 4
2

1 Functions — Alphabetical List

1-636

However, if you change the Variable to 'z^-1' by

set(h,'Variable','z^-1'),

the same command

set(h,'num',[1 2],'den',[1 3 4])

now interprets the row vectors [1 2] and [1 3 4] as the polynomials 1 + 2z−1 and
1 + 3z−1 + 4z−2 and produces:

h z
z

z z

zh z
-

-

- -() =
+

+ +
= ()1

1

1 2

1 2

1 3 4

Note Because the resulting transfer functions are different, make sure to use the
convention consistent with your choice of variable.

• “What Are Model Objects?”

See Also
get | frd | ss | tf | zpk

Tutorials
• “Model Properties”

 setDelayModel

1-637

setDelayModel
Construct state-space model with internal delays

Syntax

sys = setDelayModel(H,tau)

sys = setDelayModel(A,B1,B2,C1,C2,D11,D12,D21,D22,tau)

Description

sys = setDelayModel(H,tau) constructs the state-space model sys obtained by LFT
interconnection of the state-space model H with the vector of internal delays tau, as
shown:

w

u

z

y

H

exp(-tau*s)

sys

sys = setDelayModel(A,B1,B2,C1,C2,D11,D12,D21,D22,tau) constructs the
state-space model sys described by the following equations:

dx t

dt
Ax t B u t B w t

y t C x t D u t D w t

z t

()
= () + () + ()

() = () + () + ()

()

1 2

1 11 12

== () + () + ()

() = -()

C x t D u t D w t

w t z t

2 21 22

t .

1 Functions — Alphabetical List

1-638

tau (τ) is the vector of internal delays in sys.

Input Arguments

H

State-space (ss) model to interconnect with internal delays tau.

tau

Vector of internal delays of sys.

For continuous-time models, express tau in seconds.

For discrete-time models, express tau as integer values that represent multiples of the
sampling time.

A,B1,B2,C1,C2,D11,D12,D21,D22

Set of state-space matrices that, with the internal delay vector tau, explicitly describe the
state-space model sys.

Output Arguments

sys

State-space (ss) model with internal delays tau.

More About

Tips

• setDelayModel is an advanced operation and is not the natural way to construct
models with internal delays. See “Models with Time Delays” for recommended ways of
creating internal delays.

• The syntax sys = setDelayModel(A,B1,B2,C1,C2,D11,D12,D21,D22,tau)
constructs a continuous-time model. You can construct the discrete-time model
described by the state-space equations

 setDelayModel

1-639

x k Ax k B u k B w k

y k C x k D u k D w k

z k

+[] = [] + [] + []

[] = []+ []+ []

[] =

1
1 2

1 11 12

CC x k D u k D w k

w k z k

2 21 22[]+ [] + []

[] = -[]t .

To do so, first construct sys using sys =
setDelayModel(A,B1,B2,C1,C2,D11,D12,D21,D22,tau). Then, use sys.Ts to
set the sampling time.

• “Internal Delays”
• “Models with Time Delays”

See Also
getDelayModel | lft | ss

1 Functions — Alphabetical List

1-640

setoptions
Set plot options for response plot

Syntax

setoptions(h, PlotOpts)

setoptions(h, 'Property1', 'value1', ...)

setoptions(h, PlotOpts, 'Property1', 'value1', ...)

Description

setoptions(h, PlotOpts) sets preferences for response plot using the plot handle. h
is the plot handle, PlotOpts is a plot options handle containing information about plot
options.

There are two ways to create a plot options handle:

• Use getoptions, which accepts a plot handle and returns a plot options handle.

p = getoptions(h)

• Create a default plot options handle using one of the following commands:

• bodeoptions — Bode plots
• hsvoptions — Hankel singular values plots
• nicholsoptions — Nichols plots
• nyquistoptions — Nyquist plots
• pzoptions — Pole/zero plots
• sigmaoptions — Sigma plots
• timeoptions — Time plots (step, initial, impulse, etc.)

For example,

p = bodeoptions

returns a plot options handle for Bode plots.

 setoptions

1-641

setoptions(h, 'Property1', 'value1', ...) assigns values to property pairs
instead of using PlotOpts. To find out what properties and values are available for a
particular plot, type help <function>options. For example, for Bode plots type

help bodeoptions

For a list of the properties and values available for each plot type, see “Properties and
Values Reference”.

setoptions(h, PlotOpts, 'Property1', 'value1', ...) first assigns plot
properties as defined in @PlotOptions, and then overrides any properties governed by
the specified property/value pairs.

Examples

To change frequency units, first create a Bode plot.

sys=tf(1,[1 1]);

h=bodeplot(sys) % Create a Bode plot with plot handle h.

1 Functions — Alphabetical List

1-642

Now, change the frequency units from rad/s to Hz.

p=getoptions(h); % Create a plot options handle p.

p.FreqUnits = 'Hz'; % Modify frequency units.

setoptions(h,p); % Apply plot options to the Bode plot and

 % render.

To change the frequency units using property/value pairs, use this code.

sys=tf(1,[1 1]);

h=bodeplot(sys);

setoptions(h,'FreqUnits','Hz');

The result is the same as the first example.

See Also
getoptions

 setBlockValue

1-643

setBlockValue
Modify value of Control Design Block in Generalized Model

Syntax
M = setBlockValue(M0,blockname,val)

M = setBlockValue(M0,blockvalues)

M = setBlockValue(M0,Mref)

Description
M = setBlockValue(M0,blockname,val) modifies the current or nominal value
of the “Control Design Block” blockname in the “Generalized Model” M0 to the value
specified by val.

M = setBlockValue(M0,blockvalues) modifies the value of several Control Design
Blocks at once. The structure blockvalues specifies the blocks and replacement values.
Blocks of M0 not listed in blockvalues are unchanged.

M = setBlockValue(M0,Mref) takes replacement values from Control Design blocks
in the “Generalized Model” Mref. This syntax modifies the Control Design Blocks in M0
to match the current values of all corresponding blocks in Mref.

Use this syntax to propagate block values, such as tuned parameter values, from one
parametric model to other models that depend on the same parameters.

Input Arguments
M0

“Generalized Model” containing the blocks whose current or nominal value is modified to
val. For the syntax M = setBlockValue(M0,Mref) M0 can be a single “Control Design
Block” whose value is modified to match the value of the corresponding block in Mref.

blockname

Name of the “Control Design Block” in the model M0 whose current or nominal value is
modified.

1 Functions — Alphabetical List

1-644

To get a list of the Control Design Blocks in M0, enter M0.Blocks.

val

Replacement value for the current or nominal value of the Control Design Block,
blockname. The value val can be any value that is compatible with blockname without
changing the size, type, or sampling time of blockname.

For example, you can set the value of a tunable PID block (ltiblock.pid) to a pid
controller model , or to a transfer function (tf) model that represents a PID controller.

blockvalues

Structure specifying Control Design Blocks of M0 to modify, and the corresponding
replacement values. The fields of the structure are the names of the blocks to modify.
The value of each field specifies the replacement current or nominal value for the
corresponding block.

Mref

Generalized Model that shares some Control Design Blocks with M0. The values of these
blocks in Mref are used to update their counterparts in M0.

Output Arguments

M

“Generalized Model” obtained from M0 by updating the values of the specified blocks.

Examples

Update Controller Model with Tuned Values

Propagate the values of tuned parameters to other Control Design Blocks.

You can use the Robust Control Toolbox tuning commands such as systune, looptune,
or hinfstruct to tune blocks in a closed-loop model of a control system. If you do so,
the tuned controller parameters are embedded in a Generalized LTI Model. You can use
setBlockValue to propagate those parameters to a controller model.

 setBlockValue

1-645

Create a tunable model of the closed-loop response of a control system, and tune the
parameters using hinfstruct.

G = tf([1,0.0007],[1,0.00034,0.00086]);

Cpi = ltiblock.pid('Cpi','pi');

a = realp('a',10);

F0 = tf(a,[1 a]);

C0 = Cpi*F0;

T0 = feedback(G*C0,1);

T = hinfstruct(T0);

The controller model C0 is a Generalized LTI model with two tunable blocks, Cpi and
a. The closed-loop model T0 is also a Generalized LTI model with the same blocks. The
model T contains the tuned values of these blocks.

Propagate the tuned values of the controller in T to the controller model C0.

C = setBlockValue(C0,T)

C =

Generalized continuous-time state-space model with 1 outputs,

1 inputs, 2 states, and the following blocks:

 Cpi: Parametric PID controller, 1 occurrences.

 a: Scalar parameter, 2 occurrences.

Type "ss(C)" to see the current value, "get(C)" to see all properties,

and "C.Blocks" to interact with the blocks.

C is still a Generalized model. The current value of the Control Design Blocks in C are set
to the values the corresponding blocks of T.

Obtain a Numeric LTI model of the controller with the tuned values using getValue.

 CVal = getValue(C0,T);

This command returns a numerical state-space model of the tuned controller.

See Also
getValue | getBlockValue | showBlockValue | genss | systune | looptune |
hinfstruct

1 Functions — Alphabetical List

1-646

setValue
Modify current value of Control Design Block

Syntax

blk = setValue(blk0,val)

Description

blk = setValue(blk0,val) modifies the parameter values in the tunable “Control
Design Block”, blk0, to best match the values specified by val. An exact match can only
occur when val is compatible with the structure of blk0.

Input Arguments

blk0

“Control Design Block” whose value is modified.

val

Specifies the replacement parameters values for blk0. The value val can be any
value that is compatible with blk0 without changing the size, type, or sampling time
of blk0. For example, if blk0 is a ltiblock.pid block, valid types for val include
ltiblock.pid, a numeric pid controller model, or a numeric tf model that represents
a PID controller. setValue uses the parameter values of val to set the current value of
blockname.

Output Arguments

blk

Control Design Block of the same type as blk0, whose parameters are updated to best
match the parameters of val.

 setValue

1-647

See Also
getValue | setBlockValue | getBlockValue

1 Functions — Alphabetical List

1-648

sgrid
Generate s-plane grid of constant damping factors and natural frequencies

Syntax

sgrid

sgrid(z,wn)

Description

sgrid generates, for pole-zero and root locus plots, a grid of constant damping factors
from zero to one in steps of 0.1 and natural frequencies from zero to 10 rad/sec in steps
of one rad/sec, and plots the grid over the current axis. If the current axis contains a
continuous s-plane root locus diagram or pole-zero map, sgrid draws the grid over the
plot.

sgrid(z,wn) plots a grid of constant damping factor and natural frequency lines
for the damping factors and natural frequencies in the vectors z and wn, respectively.
If the current axis contains a continuous s-plane root locus diagram or pole-zero map,
sgrid(z,wn) draws the grid over the plot.

Alternatively, you can select Grid from the right-click menu to generate the same s-
plane grid.

Examples

Plot s-plane grid lines on the root locus for the following system.

H s
s s

s s

() = + +
+ +

2 5 1

2 3

2

2

You can do this by typing

H = tf([2 5 1],[1 2 3])

Transfer function:

 sgrid

1-649

2 s^2 + 5 s + 1

 s^2 + 2 s + 3

rlocus(H)

sgrid

See Also
zgrid | pzmap | rlocus

1 Functions — Alphabetical List

1-650

showBlockValue
Display current value of Control Design Blocks in Generalized Model

Syntax

showBlockValue(M)

Description

showBlockValue(M) displays the current values of all “Control Design Blocks” in the
“Generalized Model”, M. (For uncertain blocks, the “current value” is the nominal value
of the block.)

Input Arguments

M

“Generalized Model”.

Examples

Create a tunable genss model, and display the current value of its tunable elements.

G = zpk([],[-1,-1],1);

C = ltiblock.pid('C','PID');

a = realp('a',10);

F = tf(a,[1 a]);

T = feedback(G*C,1)*F;

showBlockValue(T)

C =

Continuous-time I-only controller:

 1

 showBlockValue

1-651

Ki * ---

 s

With Ki = 0.001

a = 10

More About

Tips

• Displaying the current values of a model is useful, for example, after you have tuned
the free parameters of the model using a Robust Control Toolbox tuning command
such as looptune.

• showBlockValue displays the current values of all Control Design Blocks in a model,
including tunable, uncertain, and switch blocks. To display the current values of only
the tunable blocks, use showTunable.

See Also
genss | getBlockValue | setBlockValue | showTunable

1 Functions — Alphabetical List

1-652

showTunable

Display current value of tunable Control Design Blocks in Generalized Model

Syntax

showTunable(M)

Description

showTunable(M) displays the current values of all tunable Control Design Blocks in
a generalized LTI model. Tunable control design blocks are parametric blocks such as
realp, ltiblock.tf, and ltiblock.pid.

Examples

Display Block Values of Tuned Control System Model

Tune the following control system using systune, and display the values of the tunable
blocks.

r
-

GC y
+

X

F

The control structure includes a PI controller C and a tunable low-pass filter in the
feedback path. The plant G is a third-order system.

 showTunable

1-653

Create models of the system components and connect them together to create a tunable
closed-loop model of the control system.

s = tf('s');

num = 33000*(s^2 - 200*s + 90000);

den = (s + 12.5)*(s^2 + 25*s + 63000);

G = num/den;

C0 = ltiblock.pid('C','pi');

a = realp('a',1);

F0 = tf(a,[1 a]);

X = AnalysisPoint('X');

T0 = feedback(G*X*C0,F0);

T0.InputName = 'r';

T0.OutputName = 'y';

T0 is a genss model that has two tunable blocks, the PI controller, C, and the parameter,
a. T0 also contains the switch block X.

Create a tuning requirement that forces the output y to track the input r, and tune the
system to meet that requirement.

Req = TuningGoal.Tracking('r','y',0.05);

[T,fSoft,~] = systune(T0,Req);

systune finds values for the tunable parameters that optimally meet the tracking
requirement. The output T is a genss model with the same Control Design Blocks as T0.
The current values of those blocks are the tuned values.

Examine the tuned values of the tunable blocks of the control system.

showTunable(T)

C =

 1

 Kp + Ki * ---

 s

 with Kp = 0.000433, Ki = 0.00527

Name: C

Continuous-time PI controller in parallel form.

1 Functions — Alphabetical List

1-654

a = 68.6

showTunable displays the values of the tunable blocks only. If you use
showBlockValue instead, the display also includes the switch block X.

Input Arguments

M — Input model
generalized LTI model

Input model of which to display tunable block values, specified as a generalized LTI
model such as a genss model.

More About

Tips

• Displaying the current values of tunable blocks is useful, for example, after you
have tuned the free parameters of the model using a Robust Control Toolbox tuning
command such as systune.

• showTunable displays the current values of the tunable blocks only. To display the
current values of all Control Design Blocks in a model, including tunable, uncertain,
and switch blocks, use showBlockValue.

• “Generalized Models”
• “Control Design Blocks”

See Also
genss | getBlockValue | setBlockValue | showBlockValue | systune

 sigma

1-655

sigma
Singular values plot of dynamic system

Syntax

sigma(sys)

sigma(sys,w)

sigma(sys,[],type)

sigma(sys,w,type)

sigma(sys1,sys2,...,sysN,w,type)

sigma(sys1,'PlotStyle1',...,sysN,'PlotStyleN',w,type)

sv = sigma(sys,w)

[sv,w] = sigma(sys)

Description

sigma calculates the singular values of the frequency response of a “dynamic system”
sys. For an FRD model, sigma computes the singular values of sys.Response at the
frequencies, sys.frequency. For continuous-time TF, SS, or ZPK models with transfer
function H(s), sigma computes the singular values of H(jω) as a function of the frequency
ω. For discrete-time TF, SS, or ZPK models with transfer function H(z) and sample time
Ts, sigma computes the singular values of

H e j Tsω()

for frequencies ω between 0 and the Nyquist frequency ωN = π/Ts.

The singular values of the frequency response extend the Bode magnitude response for
MIMO systems and are useful in robustness analysis. The singular value response of a
SISO system is identical to its Bode magnitude response. When invoked without output
arguments, sigma produces a singular value plot on the screen.

sigma(sys) plots the singular values of the frequency response of a model sys. This
model can be continuous or discrete, and SISO or MIMO. The frequency points are
chosen automatically based on the system poles and zeros, or from sys.frequency if
sys is an FRD.

1 Functions — Alphabetical List

1-656

sigma(sys,w) explicitly specifies the frequency range or frequency points to be
used for the plot. To focus on a particular frequency interval [wmin,wmax], set w =
{wmin,wmax}. To use particular frequency points, set w to the corresponding vector
of frequencies. Use logspace to generate logarithmically spaced frequency vectors.
Frequencies must be in rad/TimeUnit, where TimeUnit is the time units of the input
dynamic system, specified in the TimeUnit property of sys.

sigma(sys,[],type) or sigma(sys,w,type) plots the following modified singular
value responses:

type = 1 Singular values of the frequency response H–1, where H is the frequency
response of sys.

type = 2 Singular values of the frequency response I + H.
type = 3 Singular values of the frequency response I + H–1.

These options are available only for square systems, that is, with the same number of
inputs and outputs.

sigma(sys1,sys2,...,sysN,w,type) plots the singular value plots of several
LTI models on a single figure. The arguments w and type are optional. The models
sys1,sys2,...,sysN need not have the same number of inputs and outputs. Each
model can be either continuous- or discrete-time.

sigma(sys1,'PlotStyle1',...,sysN,'PlotStyleN',w,type) specifies a
distinctive color, linestyle, and/or marker for each system plot. See bode for an example.

sv = sigma(sys,w) and [sv,w] = sigma(sys) return the singular values sv of the
frequency response at the frequencies w. For a system with Nu input and Ny outputs, the
array sv has min(Nu,Ny) rows and as many columns as frequency points (length of w).
The singular values at the frequency w(k) are given by sv(:,k).

Examples

Compute and Plot Singular Values

Consider the following two-input, two-output dynamic system.

 sigma

1-657

Compute the singular value responses of H(s) and I + H(s).

H = [0, tf([3 0],[1 1 10]) ; tf([1 1],[1 5]), tf(2,[1 6])];

[svH,wH] = sigma(H);

[scIH,wIH] = sigma(H,[],2);

In the last command, the input 2 selects the second response type, I + H(s). The vectors
svH and svIH contain the singular value response data, at the frequencies in wH and
wIH.

Plot the singular value responses of both systems.

subplot(211)

sigma(H)

subplot(212)

sigma(H,[],2)

1 Functions — Alphabetical List

1-658

More About

Tips

You can change the properties of your plot, for example the units. For information on the
ways to change properties of your plots, see “Ways to Customize Plots”.

Algorithms

sigma uses the MATLAB function svd to compute the singular values of a complex
matrix.

 sigma

1-659

For TF, ZPK, and SS models, sigma computes the frequency response using the
freqresp algorithms. As a result, small discrepancies may exist between the sigma
responses for equivalent TF, ZPK, and SS representations of a given model.

See Also
bode | evalfr | freqresp | ltiview | nichols | nyquist

1 Functions — Alphabetical List

1-660

sigmaoptions
Create list of singular-value plot options

Syntax

P = sigmaoptions

P = sigmaoptions('cstprefs')

Description

P = sigmaoptions returns a list of available options for singular value plots with
default values set. You can use these options to customize the singular value plot
appearance from the command line.

P = sigmaoptions('cstprefs') initializes the plot options with the options you
selected in the Control System Toolbox Preferences Editor. For more information about
the editor, see “Toolbox Preferences Editor” in the User's Guide documentation.

This table summarizes the sigma plot options.

Option Description

Title, XLabel, YLabel Label text and style
TickLabel Tick label style
Grid Show or hide the grid

Specified as one of the following strings:
'off' | 'on'
Default: 'off'

XlimMode, YlimMode Limit modes
Xlim, Ylim Axes limits
IOGrouping Grouping of input-output pairs

Specified as one of the following strings:
'none' |'inputs'|'output'|'all'
Default: 'none'

InputLabels, OutputLabels Input and output label styles

 sigmaoptions

1-661

Option Description

InputVisible, OutputVisible Visibility of input and output channels

1 Functions — Alphabetical List

1-662

Option Description

FreqUnits Frequency units, specified as one of the
following strings:

• 'Hz'

• 'rad/second'

• 'rpm'

• 'kHz'

• 'MHz'

• 'GHz'

• 'rad/nanosecond'

• 'rad/microsecond'

• 'rad/millisecond'

• 'rad/minute'

• 'rad/hour'

• 'rad/day'

• 'rad/week'

• 'rad/month'

• 'rad/year'

• 'cycles/nanosecond'

• 'cycles/microsecond'

• 'cycles/millisecond'

• 'cycles/hour'

• 'cycles/day'

• 'cycles/week'

• 'cycles/month'

• 'cycles/year'

Default: 'rad/s'

You can also specify 'auto' which uses
frequency units rad/TimeUnit relative

 sigmaoptions

1-663

Option Description

to system time units specified in the
TimeUnit property. For multiple systems
with different time units, the units of the
first system are used.

FreqScale Frequency scale
Specified as one of the following strings:
'linear' | 'log'
Default: 'log'

MagUnits Magnitude units
Specified as one of the following strings:
'dB' | 'abs'
Default: 'dB'

MagScale Magnitude scale
Specified as one of the following strings:
'linear' | 'log'
Default: 'linear'

Examples

In this example, set the frequency units to Hz before creating a plot.

P = sigmaoptions; % Set the frequency units to Hz in options

P.FreqUnits = 'Hz'; % Create plot with the options specified by P

h = sigmaplot(rss(2,2,3),P);

The following singular value plot is created with the frequency units in Hz.

1 Functions — Alphabetical List

1-664

See Also
getoptions | setoptions | sigmaplot

 sigmaplot

1-665

sigmaplot

Plot singular values of frequency response and return plot handle

Syntax

h = sigmaplot(sys)

sigmaplot(sys,{wmin,wmax})

sigmaplot(sys,w)

sigmaplot(sys,w,TYPE)

sigmaplot(AX,...)

sigmaplot(..., plotoptions)

Description

h = sigmaplot(sys) produces a singular value (SV) plot of the frequency response of
the “dynamic system” sys. It also returns the plot handle h. You can use this handle to
customize the plot with the getoptions and setoptions commands. Type

help sigmaoptions

for a list of available plot options.

The frequency range and number of points are chosen automatically. See bode for details
on the notion of frequency in discrete time.

sigmaplot(sys,{wmin,wmax}) draws the SV plot for frequencies ranging between
wmin and wmax (in rad/TimeUnit, where TimeUnit is the time units of the input
dynamic system, specified in the TimeUnit property of sys).

sigmaplot(sys,w) uses the user-supplied vector w of frequencies, in rad/TimeUnit,
at which the frequency response is to be evaluated. See logspace to generate
logarithmically spaced frequency vectors.

sigmaplot(sys,w,TYPE) or sigmaplot(sys,[],TYPE) draws the following modified
SV plots depending on the value of TYPE:

1 Functions — Alphabetical List

1-666

TYPE = 1 --> SV of inv(SYS)
TYPE = 2 --> SV of I + SYS
TYPE = 3 --> SV of I + inv(SYS)

sys should be a square system when using this syntax.

sigmaplot(AX,...) plots into the axes with handle AX.

sigmaplot(..., plotoptions) plots the singular values with the options specified in
plotoptions. Type

help sigmaoptions

for more details.

Examples

Singular Value Response Plot with Custom Plot Options

Plot the singular value responses of a dynamic system.

sys = rss(3,3,5);

h = sigmaplot(sys);

 sigmaplot

1-667

Set properties of the plot handle h to customize the plot. For example, change the plot
units to Hz.

setoptions(h,'FreqUnits','Hz');

1 Functions — Alphabetical List

1-668

More About

Tips

You can change the properties of your plot, for example the units. For information on the
ways to change properties of your plots, see “Ways to Customize Plots”.

See Also
getoptions | sigma | setoptions | sigmaoptions

 sisoinit

1-669

sisoinit
Configure SISO Design Tool at startup

Syntax

init_config = sisoinit(config)

Description

init_config = sisoinit(config) returns a template init_config for initializing
Graphical Tuning window of the SISO Design Tool with the one of the following control
system configurations:

config corresponds to the control system configuration. Available configurations
include:

1 Functions — Alphabetical List

1-670

• config = 1 (default) — C in forward path, F in series
• config = 2 — C in feedback path, F in series
• config = 3 — C in forward path, feedforward F
• config = 4 — Nested loop configuration
• config = 5 — Internal model control (IMC) structure
• config = 6 — Cascade loop configuration

For each configuration, you can specify the plant models G and H, initialize the
compensator C and prefilter F, and configure the open- and closed-loop views
by specifying the corresponding fields of the structure init_config. Then use
sisotool(init_config) to start the SISO Design Tool in the specified configuration.

Output argument init_config is an object with properties. The following tables list the
block and loop properties.

Block Properties

Block Properties Values

Name String
Description String

F

Value LTI object
Name StringG

Value • LTI object
• Row or column array of LTI objects. If the sensor H

is also an array of LTI objects, the lengths of G and
H must match.

Name StringH

Value • LTI object
• Row or column array of LTI objects. If the plant G

is also an array of LTI objects, the lengths of H and
G must match.

Name String
Description String

C

Value LTI object

 sisoinit

1-671

Loop Properties

Loops Properties Values

OL1 Name

Description

View

String
String

'rlocus' 'bode'

CL1 Name

Description

View

String
String

'bode'

Examples

Initialize SISO Design Tool with C in feedback path using an LTI model:

 % Single-loop configuration with C in the feedback path.

T = sisoinit(2);

% Model for plant G.

T.G.Value = tf(1, [1 1]);

% Initial compensator value.

T.C.Value = tf(1,[1 2]);

% Views for tuning Open-Loop OL1.

T.OL1.View = {'rlocus','nichols'};

% Launch SISO Design Tool using configuration T

sisotool(T)

Initialize SISO Design Tool with C in feedback path using an array of LTI models:

% Specify an initial configuration.

initconfig = sisoinit(2);

% Specify model parameters.

m = 3;

b = 0.5;

k = 8:1:10;

T = 0.1:.05:.2;

% Create an LTI array to model variations in plant G.

for ct = 1:length(k);

 G(:,:,ct) = tf(1,[m,b,k(ct)]);

end

% Assign G to the initial configuration.

initconfig.G.Value = G;

1 Functions — Alphabetical List

1-672

% Create an LTI array to model variations in sensor H.

for ct = 1:length(T);

 H(:,:,ct) = tf(1,[1/T(ct), 1]);

end

% Assign H to the initial configuration.

initconfig.H.Value = H;

% Specify initial controller.

initconfig.C.Value = tf(1,[1 2]);

% Views for tuning Open-Loop (OL1)

initconfig.OL1.View = {'rlocus','bode'};

% Launch SISO Design Tool using initconfig.

sisotool(initconfig)

More About
• “SISO Design Tool”
• “Control Design Analysis of Multiple Models”

See Also
sisotool

 sisotool

1-673

sisotool

Interactively design and tune SISO feedback loops

Syntax

sisotool

sisotool(plant)

sisotool(plant,comp)

sisotool(plant,comp,sensor,prefilt)

sisotool(views)

sisotool(views,plant,comp)

sisotool(initdata)

sisotool(sessiondata)

Description

sisotool opens a SISO Design GUI for interactive compensator design. This GUI
allows you to design a single-input/single-output (SISO) compensator using root locus,
Bode diagram, Nichols and Nyquist techniques. You can also automatically design a
compensator using this GUI.

By default, the SISO Design Tool:

• Opens the Control and Estimation Tools Manager with a default SISO Design Task
node.

• Opens the Graphical Tuning editor with root locus and open-loop Bode diagrams.
• Places the compensator, C, in the forward path in series with the plant, G.
• Assumes the prefilter, F, and the sensor, H, are unity gains. Once you specify G and

H, they are fixed in the feedback structure.

The default control architecture is shown in this figure.

1 Functions — Alphabetical List

1-674

There are six control architectures available. See sisoinit for more information.

This picture shows the SISO Design Graphical editor.

sisotool(plant) opens the SISO Design Tool, imports plant, and initializes the plant
model G to plant. plant can be any SISO LTI model created with ss, tf, zpk or frd, or
a row or column array of LTI models.

 sisotool

1-675

sisotool(plant,comp) initializes the plant model G to plant, the compensator C to
comp. comp is an LTI object.

sisotool(plant,comp,sensor,prefilt) initializes the plant G to plant,
compensator C to comp, sensor H to sensor, and the prefilter F to prefilt. sensor is
an LTI object or a row or column array of LTI objects. If plant is also an array of LTI
objects, the lengths of sensor and plant must match. prefilt is an LTI object.

sisotool(views) or sisotool(views,plant,comp) specifies the initial
configuration of the SISO Design Tool. views can be any of the following strings (or
combination thereof):

• 'rlocus' — Root Locus plot
• 'bode' — Bode diagrams of the open-loop response
• 'nichols' — Nichols plot
• 'filter' — Bode diagrams of the prefilter F and the closed-loop response from the

command into F to the output of the plant G .

For example

 sisotool('bode')

opens a SISO Design Tool with only the Bode Diagrams. If there is more than one view,
the views are specified in a cell array.

sisotool(initdata) initializes the SISO Design Tool with more general control
system configurations. Use sisoinit to create the initialization data structure
initdata.

sisotool(sessiondata) opens the SISO Design Tool with a previously saved session
where sessiondata is the MAT-file for the saved session.

Examples

Launch SISO Design Tool GUI in default configuration using LTI models:

% Create plant G.

G = tf(1, [1 1]);

% Create controller C.

C = tf(1,[1 2]);

1 Functions — Alphabetical List

1-676

% Launch the GUI.

sisotool(G,C)

Launch SISO Design Tool GUI in default configuration using an array of LTI models:

% Specify model parameters.

m = 3;

b = 0.5;

k = 8:1:10;

T = 0.1:.05:.2;

% Create an LTI array to model variations in plant G.

for ct = 1:length(k);

 G(:,:,ct) = tf(1,[m,b,k(ct)]);

end

% Create an LTI array to model variations in sensor H.

for ct = 1:length(T);

 H(:,:,ct) = tf(1,[1/T(ct), 1]);

end

% Create a controller C.

C = tf(1,[1 2]);

% Launch the GUI.

sisotool(G,C,H)

More About
• “SISO Design Tool”

See Also
bode | ltiview | | rlocus | nichols

Tutorials
• “How to Analyze the Controller Design for Multiple Models”
• “Bode Diagram Design”
• “Root Locus Design”
• “Nichols Plot Design”
• “Position Control of a DC Motor”

 size

1-677

size
Query output/input/array dimensions of input–output model and number of frequencies
of FRD model

Syntax

size(sys)

d = size(sys)

Ny = size(sys,1)

Nu = size(sys,2)

Sk = size(sys,2+k)

Nf = size(sys,'frequency')

Description

When invoked without output arguments, size(sys) returns a description of type
and the input-output dimensions of sys. If sys is a model array, the array size is also
described. For identified models, the number of free parameters is also displayed. The
lengths of the array dimensions are also included in the response to size when sys is a
model array.

d = size(sys) returns:

• The row vector d = [Ny Nu] for a single dynamic model sys with Ny outputs and Nu
inputs

• The row vector d = [Ny Nu S1 S2 ... Sp] for an S1-by-S2-by-...-by-Sp array of
dynamic models with Ny outputs and Nu inputs

Ny = size(sys,1) returns the number of outputs of sys.

Nu = size(sys,2) returns the number of inputs of sys.

Sk = size(sys,2+k) returns the length of the k-th array dimension when sys is a
model array.

Nf = size(sys,'frequency') returns the number of frequencies when sys is a
frequency response data model. This is the same as the length of sys.frequency.

1 Functions — Alphabetical List

1-678

Examples

Example 1

Consider the model array of random state-space models

sys = rss(5,3,2,3);

Its dimensions are obtained by typing

size(sys)

3x1 array of state-space models

Each model has 3 outputs, 2 inputs, and 5 states.

Example 2

Consider the process model:

sys = idproc({'p1d', 'p2'; 'p3uz', 'p0'});

It’s input-output dimensions and number of free parameters are obtained by typing:

size(sys)

Process model with 2 outputs, 2 inputs and 12 free parameters.

See Also
issiso | ndims | isempty

 sminreal

1-679

sminreal
Structural pole/zero cancellations

Syntax

msys = sminreal(sys)

Description

msys = sminreal(sys) eliminates the states of the state-space model sys that don't
affect the input/output response. All of the states of the resulting state-space model msys
are also states of sys and the input/output response of msys is equivalent to that of sys.

sminreal eliminates only structurally non minimal states, i.e., states that can be
discarded by looking only at hard zero entries in the A, B, and C matrices. Such
structurally nonminimal states arise, for example, when linearizing a Simulink model
that includes some unconnected state-space or transfer function blocks.

Examples

Suppose you concatenate two SS models, sys1 and sys2.

sys = [sys1,sys2];

This operation is depicted in the diagram below.

If you extract the subsystem sys1 from sys, with

1 Functions — Alphabetical List

1-680

sys(1,1)

all of the states of sys, including those of sys2 are retained. To eliminate the
unobservable states from sys2, while retaining the states of sys1, type

sminreal(sys(1,1))

More About

Tips

The model resulting from sminreal(sys) is not necessarily minimal, and may have a
higher order than one resulting from minreal(sys). However, sminreal(sys) retains
the state structure of sys, while, in general, minreal(sys) does not.

See Also
minreal

 ss

1-681

ss
Create state-space model, convert to state-space model

Syntax

sys = ss(a,b,c,d)

sys = ss(a,b,c,d,Ts)

sys = ss(d)

sys = ss(a,b,c,d,ltisys)

sys_ss = ss(sys)

sys_ss = ss(sys,'minimal')

sys_ss = ss(sys,'explicit')

sys_ss = ss(sys, 'measured')

sys_ss = ss(sys, 'noise')

sys_ss = ss(sys, 'augmented')

Description

Use ss to create state-space models (ss model objects) with real- or complex-valued
matrices or to convert dynamic system models to state-space model form. You can also
use ss to create Generalized state-space (genss) models.

Creation of State-Space Models

sys = ss(a,b,c,d) creates a state-space model object representing the continuous-
time state-space model

&x Ax Bu

y Cx Du

= +

= +

For a model with Nx states, Ny outputs, and Nu inputs:

• a is an Nx-by-Nx real- or complex-valued matrix.
• b is an Nx-by-Nu real- or complex-valued matrix.

1 Functions — Alphabetical List

1-682

• c is an Ny-by-Nx real- or complex-valued matrix.
• d is an Ny-by-Nu real- or complex-valued matrix.

To set D = 0 , set d to the scalar 0 (zero), regardless of the dimension.

sys = ss(a,b,c,d,Ts) creates the discrete-time model

x n Ax n Bu n

y n Cx n Du n

[] [] []

[] [] []

+ = +

= +

1

with sample time Ts (in seconds). Set Ts = -1 or Ts = [] to leave the sample time
unspecified.

sys = ss(d) specifies a static gain matrix D and is equivalent to

sys = ss([],[],[],d)

sys = ss(a,b,c,d,ltisys) creates a state-space model with properties inherited
from the model ltisys (including the sample time).

Any of the previous syntaxes can be followed by property name/property value pairs.

'PropertyName',PropertyValue

Each pair specifies a particular property of the model, for example, the input names or
some notes on the model history. See “Properties” on page 1-684 for more information
about available ss model object properties.

The following expression:

sys = ss(a,b,c,d,'Property1',Value1,...,'PropertyN',ValueN)

is equivalent to the sequence of commands:

sys = ss(a,b,c,d)

set(sys,'Property1',Value1,...,'PropertyN',ValueN)

Conversion to State Space

sys_ss = ss(sys) converts a dynamic system model sys to state-space form. The
output sys_ss is an equivalent state-space model (ss model object). This operation is
known as state-space realization.

 ss

1-683

sys_ss = ss(sys,'minimal') produces a state-space realization with no
uncontrollable or unobservable states. This state-space realization is equivalent to
sys_ss = minreal(ss(sys)).

sys_ss = ss(sys,'explicit') computes an explicit realization (E = I) of the
dynamic system model sys. If sys is improper, ss returns an error.

Note: Conversions to state space are not uniquely defined in the SISO case. They are
also not guaranteed to produce a minimal realization in the MIMO case. For more
information, see “Recommended Working Representation”.

Conversion of Identified Models

An identified model is represented by an input-output equation of the form
y(t) = Gu(t) + He(t) , where u(t) is the set of measured input channels and e(t) represents
the noise channels. If Λ = LL' represents the covariance of noise e(t), this equation can
also be written as y(t) = Gu(t) + HLv(t) , where cov(v(t)) = I .

sys_ss = ss(sys) or sys_ss = ss(sys, 'measured') converts the measured
component of an identified linear model into the state-space form. sys is a model of type
idss, idproc, idtf, idpoly, or idgrey. sys_ss represents the relationship between u
and y.

sys_ss = ss(sys, 'noise') converts the noise component of an identified linear
model into the state space form. It represents the relationship between the noise input
v(t) and output y_noise = HL v(t). The noise input channels belong to the InputGroup
'Noise'. The names of the noise input channels are v@yname, where yname is the name of
the corresponding output channel. sys_ss has as many inputs as outputs.

sys_ss = ss(sys, 'augmented') converts both the measured and noise dynamics
into a state-space model. sys_ss has ny+nu inputs such that the first nu inputs
represent the channels u(t) while the remaining by channels represent the noise
channels v(t). sys_ss.InputGroup contains 2 input groups- 'measured' and 'noise'.
sys_ss.InputGroup.Measured is set to 1:nu while sys_ss.InputGroup.Noise is
set to nu+1:nu+ny. sys_ss represents the equation y(t) = [G HL] [u; v]

1 Functions — Alphabetical List

1-684

Tip An identified nonlinear model cannot be converted into a state-space form. Use linear
approximation functions such as linearize and linapp.

Creation of Generalized State-Space Models

You can use the syntax:

gensys = ss(A,B,C,D)

to create a Generalized state-space (genss) model when one or more of the matrices A, B,
C, D is a tunable realp or genmat model. For more information about Generalized state-
space models, see “Models with Tunable Coefficients”.

Properties

ss objects have the following properties:

a,b,c,d,e

State-space matrices.

• a — State matrix A. Square real- or complex-valued matrix with as many rows as
states.

• b — Input-to-state matrix B. Real- or complex-valued matrix with as many rows as
states and as many columns as inputs.

• c — State-to-output matrix C. Real- or complex-valued matrix with as many rows as
outputs and as many columns as states.

• d — Feedthrough matrix D. Real- or complex-valued matrix with as many rows as
outputs and as many columns as inputs.

• e — E matrix for implicit (descriptor) state-space models. By default e = [],
meaning that the state equation is explicit. To specify an implicit state equation E
dx/dt = Ax + Bu, set this property to a square matrix of the same size as a. See dss
for more information about creating descriptor state-space models.

Scaled

Logical value indicating whether scaling is enabled or disabled.

 ss

1-685

When Scaled = 0 (false), most numerical algorithms acting on the state-space model
automatically rescale the state vector to improve numerical accuracy. You can disable
such auto-scaling by setting Scaled = 1 (true). For more information about scaling, see
prescale.

Default: 0 (false)

StateName

State names. For first-order models, set StateName to a string. For models with two
or more states, set StateName to a cell array of strings . Use an empty string '' for
unnamed states.

Default: Empty string '' for all states

StateUnit

State units. Use StateUnit to keep track of the units each state is expressed in. For
first-order models, set StateUnit to a string. For models with two or more states, set
StateUnit to a cell array of strings. StateUnit has no effect on system behavior.

Default: Empty string '' for all states

InternalDelay

Vector storing internal delays.

Internal delays arise, for example, when closing feedback loops on systems with delays,
or when connecting delayed systems in series or parallel. For more information about
internal delays, see “Closing Feedback Loops with Time Delays” in the Control System
Toolbox User's Guide.

For continuous-time models, internal delays are expressed in the time unit specified
by the TimeUnit property of the model. For discrete-time models, internal delays are
expressed as integer multiples of the sampling period Ts. For example, InternalDelay
= 3 means a delay of three sampling periods.

You can modify the values of internal delays. However, the number of entries in
sys.InternalDelay cannot change, because it is a structural property of the model.

InputDelay

Input delay for each input channel, specified as a scalar value or numeric vector. For
continuous-time systems, specify input delays in the time unit stored in the TimeUnit

1 Functions — Alphabetical List

1-686

property. For discrete-time systems, specify input delays in integer multiples of the
sampling period Ts. For example, InputDelay = 3 means a delay of three sampling
periods.

For a system with Nu inputs, set InputDelay to an Nu-by-1 vector. Each entry of this
vector is a numerical value that represents the input delay for the corresponding input
channel.

You can also set InputDelay to a scalar value to apply the same delay to all channels.

Default: 0

OutputDelay

Output delays. OutputDelay is a numeric vector specifying a time delay for each output
channel. For continuous-time systems, specify output delays in the time unit stored
in the TimeUnit property. For discrete-time systems, specify output delays in integer
multiples of the sampling period Ts. For example, OutputDelay = 3 means a delay of
three sampling periods.

For a system with Ny outputs, set OutputDelay to an Ny-by-1 vector, where each entry
is a numerical value representing the output delay for the corresponding output channel.
You can also set OutputDelay to a scalar value to apply the same delay to all channels.

Default: 0 for all output channels

Ts

Sampling time. For continuous-time models, Ts = 0. For discrete-time models, Ts is
a positive scalar representing the sampling period. This value is expressed in the unit
specified by the TimeUnit property of the model. To denote a discrete-time model with
unspecified sampling time, set Ts = -1.

Changing this property does not discretize or resample the model. Use c2d and d2c to
convert between continuous- and discrete-time representations. Use d2d to change the
sampling time of a discrete-time system.

Default: 0 (continuous time)

TimeUnit

String representing the unit of the time variable. This property specifies the units for the
time variable, the sampling time Ts, and any time delays in the model. Use any of the
following values:

 ss

1-687

• 'nanoseconds'

• 'microseconds'

• 'milliseconds'

• 'seconds'

• 'minutes'

• 'hours'

• 'days'

• 'weeks'

• 'months'

• 'years'

Changing this property has no effect on other properties, and therefore changes the
overall system behavior. Use chgTimeUnit to convert between time units without
modifying system behavior.

Default: 'seconds'

InputName

Input channel names. Set InputName to a string for single-input model. For a multi-
input model, set InputName to a cell array of strings.

Alternatively, use automatic vector expansion to assign input names for multi-input
models. For example, if sys is a two-input model, enter:

sys.InputName = 'controls';

The input names automatically expand to {'controls(1)';'controls(2)'}.

You can use the shorthand notation u to refer to the InputName property. For example,
sys.u is equivalent to sys.InputName.

Input channel names have several uses, including:

• Identifying channels on model display and plots
• Extracting subsystems of MIMO systems
• Specifying connection points when interconnecting models

Default: Empty string '' for all input channels

1 Functions — Alphabetical List

1-688

InputUnit

Input channel units. Use InputUnit to keep track of input signal units. For a single-
input model, set InputUnit to a string. For a multi-input model, set InputUnit to a cell
array of strings. InputUnit has no effect on system behavior.

Default: Empty string '' for all input channels

InputGroup

Input channel groups. The InputGroup property lets you assign the input channels of
MIMO systems into groups and refer to each group by name. Specify input groups as a
structure. In this structure, field names are the group names, and field values are the
input channels belonging to each group. For example:

sys.InputGroup.controls = [1 2];

sys.InputGroup.noise = [3 5];

creates input groups named controls and noise that include input channels 1, 2 and
3, 5, respectively. You can then extract the subsystem from the controls inputs to all
outputs using:

sys(:,'controls')

Default: Struct with no fields

OutputName

Output channel names. Set OutputName to a string for single-output model. For a multi-
output model, set OutputName to a cell array of strings.

Alternatively, use automatic vector expansion to assign output names for multi-output
models. For example, if sys is a two-output model, enter:

sys.OutputName = 'measurements';

The output names to automatically expand to
{'measurements(1)';'measurements(2)'}.

You can use the shorthand notation y to refer to the OutputName property. For example,
sys.y is equivalent to sys.OutputName.

Output channel names have several uses, including:

 ss

1-689

• Identifying channels on model display and plots
• Extracting subsystems of MIMO systems
• Specifying connection points when interconnecting models

Default: Empty string '' for all input channels

OutputUnit

Output channel units. Use OutputUnit to keep track of output signal units. For
a single-output model, set OutputUnit to a string. For a multi-output model, set
OutputUnit to a cell array of strings. OutputUnit has no effect on system behavior.

Default: Empty string '' for all input channels

OutputGroup

Output channel groups. The OutputGroup property lets you assign the output channels
of MIMO systems into groups and refer to each group by name. Specify output groups as
a structure. In this structure, field names are the group names, and field values are the
output channels belonging to each group. For example:

sys.OutputGroup.temperature = [1];

sys.InputGroup.measurement = [3 5];

creates output groups named temperature and measurement that include output
channels 1, and 3, 5, respectively. You can then extract the subsystem from all inputs to
the measurement outputs using:

sys('measurement',:)

Default: Struct with no fields

Name

System name. Set Name to a string to label the system.

Default: ''

Notes

Any text that you want to associate with the system. Set Notes to a string or a cell array
of strings.

1 Functions — Alphabetical List

1-690

Default: {}

UserData

Any type of data you wish to associate with system. Set UserData to any MATLAB data
type.

Default: []

SamplingGrid

Sampling grid for model arrays, specified as a data structure.

For model arrays that are derived by sampling one or more independent variables,
this property tracks the variable values associated with each model in the array. This
information appears when you display or plot the model array. Use this information to
trace results back to the independent variables.

Set the field names of the data structure to the names of the sampling variables. Set
the field values to the sampled variable values associated with each model in the array.
All sampling variables should be numeric and scalar valued, and all arrays of sampled
values should match the dimensions of the model array.

For example, suppose you create a 11-by-1 array of linear models, sysarr, by taking
snapshots of a linear time-varying system at times t = 0:10. The following code stores
the time samples with the linear models.

 sysarr.SamplingGrid = struct('time',0:10)

Similarly, suppose you create a 6-by-9 model array, M, by independently sampling two
variables, zeta and w. The following code attaches the (zeta,w) values to M.

[zeta,w] = ndgrid(<6 values of zeta>,<9 values of w>)

M.SamplingGrid = struct('zeta',zeta,'w',w)

When you display M, each entry in the array includes the corresponding zeta and w
values.

M

M(:,:,1,1) [zeta=0.3, w=5] =

 25

 ss

1-691

 s^2 + 3 s + 25

M(:,:,2,1) [zeta=0.35, w=5] =

 25

 s^2 + 3.5 s + 25

...

Default: []

Examples

Discrete-Time State-Space Model

Create a state-space model with a sampling time of 0.25 s and the following state-space
matrices:

A B C D=
- -

È

Î
Í

˘

˚
˙ =

È

Î
Í

˘

˚
˙ = [] = []

0 1

5 2

0

3
0 1 0

To do this, enter the following commands:

A = [0 1;-5 -2];

B = [0;3];

C = [0 1];

D = 0;

sys = ss(A,B,C,D,0.25);

The last argument sets the sampling time.

Discrete-Time State-Space Model with Custom State and Input Names

Create a discrete-time model with matrices A,B,C,D and sample time 0.05 second.

sys = ss(A,B,C,D,0.05,'statename',{'position' 'velocity'},...

 'inputname','force',...

1 Functions — Alphabetical List

1-692

 'notes','Created 01/16/11');

This model has two states labeled position and velocity, and one input labeled
force (the dimensions of A,B,C,D should be consistent with these numbers of states
and inputs). Finally, a note is attached with the date of creation of the model.

Convert Transfer Function Model to State-Space Model

Convert a transfer function model to a state-space model.

H s

s

s s s

s

s s

() =

+

+ + +

+

+ +

È

Î

Í
Í
Í
Í

˘

˚

˙
˙
˙
˙

1

3 3 2

3

1

3 2

2

2

by typing

H = [tf([1 1],[1 3 3 2]) ; tf([1 0 3],[1 1 1])];

sys = ss(H);

size(sys)

State-space model with 2 outputs, 1 input, and 5 states.

The number of states is equal to the cumulative order of the SISO entries of H(s).

To obtain a minimal realization of H(s), type

sys = ss(H,'min');

size(sys)

State-space model with 2 outputs, 1 input, and 3 states.

The resulting state-space model has order of three, which is the minimum number of
states needed to represent H(s). You can see this number of states by factoring H(s) as
the product of a first-order system with a second-order system.

H s s

s

s s

s

s s

() = +

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

+

+ +

+

+ +

È

Î

Í
Í
Í
Í

˘

˚

˙
˙
˙
˙

1

2
0

0 1

1

1

3

1

2

2

2

 ss

1-693

Explicit Realization of Descriptor State-Space Model

Create a descriptor state-space model (E ≠ I).

a = [2 -4; 4 2];

b = [-1; 0.5];

c = [-0.5, -2];

d = [-1];

e = [1 0; -3 0.5];

sysd = dss(a,b,c,d,e);

Compute an explicit realization of the system (E = I).

syse = ss(sysd,'explicit')

syse =

 a =

 x1 x2

 x1 2 -4

 x2 20 -20

 b =

 u1

 x1 -1

 x2 -5

 c =

 x1 x2

 y1 -0.5 -2

 d =

 u1

 y1 -1

Continuous-time state-space model.

Confirm that the descriptor and explicit realizations have equivalent dynamics.

bodeplot(sysd,syse,'g--')

1 Functions — Alphabetical List

1-694

Generalized State-Space Model

This example shows how to create a state-space (genss) model having both fixed and
tunable parameters.

Create a state-space model having the following state-space matrices:

A
a b

ab
B C D=

+È

Î
Í

˘

˚
˙ =

-È

Î
Í

˘

˚
˙ = [] =

1

0

3 0

1 5
0 3 0 0,

.

.
, . , ,

where a and b are tunable parameters, whose initial values are –1 and 3, respectively.

1 Create the tunable parameters using realp.

 ss

1-695

 a = realp('a',-1);

 b = realp('b',3);

2 Define a generalized matrix using algebraic expressions of a and b.

A = [1 a+b;0 a*b]

A is a generalized matrix whose Blocks property contains a and b. The initial value
of A is M = [1 2;0 -3], from the initial values of a and b.

3 Create the fixed-value state-space matrices.

B = [-3.0;1.5];

C = [0.3 0];

D = 0;

4 Use ss to create the state-space model.

sys = ss(A,B,C,D)

sys is a generalized LTI model (genss) with tunable parameters a and b.

Extract Components from Identified State-Space Model

Extract the measured and noise components of an identified polynomial model into two
separate state-space models. The former (measured component) can serve as a plant
model while the latter can serve as a disturbance model for control system design.

load icEngine

z = iddata(y,u,0.04);

sys = ssest(z,3);

sysMeas = ss(sys,'measured')

sysNoise = ss(sys,'noise')

Alternatively, use ss(sys) to extract the measured component.

More About

Algorithms

For TF to SS model conversion, ss(sys_tf) returns a modified version of the
controllable canonical form. It uses an algorithm similar to tf2ss, but further rescales

1 Functions — Alphabetical List

1-696

the state vector to compress the numerical range in state matrix A and to improve
numerics in subsequent computations.

For ZPK to SS conversion, ss(sys_zpk) uses direct form II structures, as defined in
signal processing texts. See Discrete-Time Signal Processing by Oppenheim and Schafer
for details.

For example, in the following code, A and sys.a differ by a diagonal state
transformation:

n=[1 1];

d=[1 1 10];

[A,B,C,D]=tf2ss(n,d);

sys=ss(tf(n,d));

A

A =

 -1 -10

 1 0

sys.a

ans =

 -1 -5

 2 0

For details, see balance.
• “What Are Model Objects?”
• “State-Space Models”

See Also
dss | frd | get | set | ssdata | tf | zpk

Tutorials
• “State-Space Model”
• “MIMO State-Space Model”

 ss2ss

1-697

ss2ss
State coordinate transformation for state-space model

Syntax

sysT = ss2ss(sys,T)

Description

Given a state-space model sys with equations

&x Ax Bu

y Cx Du

= +

= +

or the innovations form used by the identified state-space (IDSS) models:

dx

dt
Ax Bu Ke

y Cx Du e

= + +

= + +

(or their discrete-time counterpart), ss2ss performs the similarity transformation
x Tx= on the state vector x and produces the equivalent state-space model sysT with
equations.

&x TAT x TBu

y CT x Du

= +

= +

-

-

1

1

or, in the case of an IDSS model:

&x x

x

TAT TBu TKe

y CT Du e

= + +

= + +

-

-

1

1

(IDSS models require System Identification Toolbox software.)

1 Functions — Alphabetical List

1-698

sysT = ss2ss(sys,T) returns the transformed state-space model sysT given
sys and the state coordinate transformation T. The model sys must be in state-space
form and the matrix T must be invertible. ss2ss is applicable to both continuous- and
discrete-time models.

Examples

Perform a similarity transform to improve the conditioning of the A matrix.

T = balance(sys.a)

sysb = ss2ss(sys,inv(T))

See Also
balreal | canon

 ssdata

1-699

ssdata
Access state-space model data

Syntax

[a,b,c,d] = ssdata(sys)

[a,b,c,d,Ts] = ssdata(sys)

Description

[a,b,c,d] = ssdata(sys) extracts the matrix (or multidimensional array) data
A, B, C, D from the state-space model (LTI array) sys. If sys is a transfer function or
zero-pole-gain model (LTI array), it is first converted to state space. See ss for more
information on the format of state-space model data.

If sys appears in descriptor form (nonempty E matrix), an equivalent explicit form is
first derived.

If sys has internal delays, A, B, C, D are obtained by first setting all internal delays to
zero (creating a zero-order Padé approximation). For some systems, setting delays to zero
creates singular algebraic loops, which result in either improper or ill-defined, zero-delay
approximations. For these systems, ssdata cannot display the matrices and returns an
error. This error does not imply a problem with the model sys itself.

[a,b,c,d,Ts] = ssdata(sys) also returns the sample time Ts.

You can access the remaining LTI properties of sys with get or by direct referencing.
For example:

sys.statename

For arrays of state-space models with variable numbers of states, use the syntax:

[a,b,c,d] = ssdata(sys,'cell')

to extract the state-space matrices of each model as separate cells in the cell arrays a, b,
c, and d.

1 Functions — Alphabetical List

1-700

See Also
dssdata | getdelaymodel | set | tfdata | zpkdata | get | ss

 stabsep

1-701

stabsep
Stable-unstable decomposition

Syntax

[GS,GNS]=stabsep(G)

[G1,GNS] = stabsep(G,'abstol',ATOL,'reltol',RTOL)

[G1,G2]=stabsep(G, ...,'Mode', MODE,'Offset', ALPHA)

[G1,G2] = stabsep(G, opts)

Description

[GS,GNS]=stabsep(G) decomposes the LTI model G into its stable and unstable parts

 G = GS + GNS

where GS contains all stable modes that can be separated from the unstable modes in a
numerically stable way, and GNS contains the remaining modes. GNS is always strictly
proper.

[G1,GNS] = stabsep(G,'abstol',ATOL,'reltol',RTOL) specifies absolute and
relative error tolerances for the stable/unstable decomposition. The frequency responses
of G and GS + GNS should differ by no more than ATOL+RTOL*abs(G). Increasing these
tolerances helps separate nearby stable and unstable modes at the expense of accuracy.
The default values are ATOL=0 and RTOL=1e-8.

[G1,G2]=stabsep(G, ...,'Mode', MODE,'Offset', ALPHA) produces a more
general stable/unstable decomposition where G1 includes all separable poles lying in
the regions defined using offset ALPHA. This can be useful when there are numerical
accuracy issues. For example, if you have a pair of poles close to, but slightly to the left of
the jω-axis, you can decide not to include them in the stable part of the decomposition if
numerical considerations lead you to believe that the poles may be in fact unstable

This table lists the stable/unstable boundaries as defined by the offset ALPHA.

Mode Continuous Time Region Discrete Time Region

1 Re(s)<-ALPHA*max(1,|Im(s)|) 1 |z| < 1-ALPHA

1 Functions — Alphabetical List

1-702

Mode Continuous Time Region Discrete Time Region

2 Re(s)> ALPHA*max(1,|Im(s)|) 2 |z| > 1+ALPHA

The default values are MODE=1 and ALPHA=0.

[G1,G2] = stabsep(G, opts) computes the stable/unstable decomposition of G using
the options specified in the stabsepOptions object opts.

Examples

Compute a stable/unstable decomposition with absolute error no larger than 1e-5 and an
offset of 0.1:

h = zpk(1,[-2 -1 1 -0.001],0.1)

[hs,hns] = stabsep(h,stabsepOptions('AbsTol',1e-5,'Offset',0.1));

The stable part of the decomposition has poles at -1 and -2.

hs

Zero/pole/gain:

-0.050075 (s+2.999)

 (s+1) (s+2)

The unstable part of the decomposition has poles at +1 and -.001 (which is nominally
stable).

hns

Zero/pole/gain:

0.050075 (s-1)

(s+0.001) (s-1)

See Also
stabsepOptions | modsep

 stabsepOptions

1-703

stabsepOptions
Options for stable-unstable decomposition

Syntax

opts = stabsepOptions

opts = stabsepOptions('OptionName', OptionValue)

Description

opts = stabsepOptions returns the default options for the stabsep command.

opts = stabsepOptions('OptionName', OptionValue) accepts one or more
comma-separated name/value pairs. Specify OptionName inside single quotes.

Input Arguments

Name-Value Pair Arguments

'Focus'

Focus of decomposition. Specified as one of the following values:

'stable' First output of stabsep contains only stable dynamics.
'unstable' First output of stabsep contains only unstable dynamics.

Default: 'stable'

'AbsTol, RelTol'

Absolute and relative error tolerance for stable/unstable decomposition. Positive scalar
values. When decomposing a model G, stabsep ensures that the frequency responses
of G and GS + GU differ by no more than AbsTol + RelTol*abs(G). Increasing these
tolerances helps separate nearby stable and unstable modes at the expense of accuracy.
See stabsep for more information.

1 Functions — Alphabetical List

1-704

Default: AbsTol = 0; RelTol = 1e-8

'Offset'

Offset for the stable/unstable boundary. Positive scalar value. The first output of
stabsepincludes only poles satisfying:

Continuous time:

• Re(s) < -Offset * max(1,|Im(s)|) (Focus = 'stable')

• Re(s) > Offset * max(1,|Im(s)|) (Focus = 'unstable')

Discrete time:

• |z| < 1 - Offset (Focus = 'stable')
• |z| >1 + Offset (Focus = 'unstable')

Increase the value of Offset to treat poles close to the stability boundary as unstable.

Default: 0

For additional information on the options and how to use them, see the stabsep
reference page.

Examples

Compute the stable/unstable decomposition of the system given by:

G s
s

s s i s i

() =
+()

+() + -() + +()-

10 0 5

10 2 5 2 5
6

.

Use the Offset option to force stabsep to exclude the pole at s = 10–6 from the stable
term of the stable/unstable decomposition.

G = zpk(-.5,[-1e-6 -2+5i -2-5i],10);

opts = stabsepOptions('Offset',.001); % Create option set

[G1,G2] = stabsep(G,opts) % treats -1e-6 as unstable

These commands return the result:

 stabsepOptions

1-705

Zero/pole/gain:

-0.17241 (s-54)

(s^2 + 4s + 29)

Zero/pole/gain:

 0.17241

(s+1e-006)

The pole at s = 10–6 is in the second (unstable) output.

See Also
stabsep

1 Functions — Alphabetical List

1-706

stack

Build model array by stacking models or model arrays along array dimensions

Syntax

sys = stack(arraydim,sys1,sys2,...)

Description

sys = stack(arraydim,sys1,sys2,...) produces an array of dynamic system
models sys by stacking (concatenating) the models (or arrays) sys1,sys2,... along
the array dimension arraydim. All models must have the same number of inputs
and outputs (the same I/O dimensions), but the number of states can vary. The I/O
dimensions are not counted in the array dimensions. For more information about model
arrays and array dimensions, see “Model Arrays”.

For arrays of state-space models with variable order, you cannot use the dot operator
(e.g., sys.a) to access arrays. Use the syntax

[a,b,c,d] = ssdata(sys,'cell')

to extract the state-space matrices of each model as separate cells in the cell arrays a, b,
c, and d.

Examples

Example 1

If sys1 and sys2 are two models:

• stack(1,sys1,sys2) produces a 2-by-1 model array.
• stack(2,sys1,sys2) produces a 1-by-2 model array.
• stack(3,sys1,sys2) produces a 1-by-1-by-2 model array.

 stack

1-707

Example 2

Stack identified state-space models derived from the same estimation data and compare
their bode responses.

load iddata1 z1

sysc = cell(1,5);

opt = ssestOptions('Focus','simulation');

for i = 1:5

sysc{i} = ssest(z1,i-1,opt);

end

sysArray = stack(1, sysc{:});

bode(sysArray);

1 Functions — Alphabetical List

1-708

step
Step response plot of dynamic system

Syntax

step(sys)

step(sys,Tfinal)

step(sys,t)

step(sys1,sys2,...,sysN)

step(sys1,sys2,...,sysN,Tfinal)

step(sys1,sys2,...,sysN,t)

y = step(sys,t)

[y,t] = step(sys)

[y,t] = step(sys,Tfinal)

[y,t,x] = step(sys)

[y,t,x,ysd] = step(sys)

[y,...] = step(sys,...,options)

Description

step calculates the step response of a dynamic system. For the state space case, zero
initial state is assumed. When it is invoked with no output arguments, this function plots
the step response on the screen.

step(sys) plots the step response of an arbitrary “dynamic system model” sys. This
model can be continuous or discrete, and SISO or MIMO. The step response of multi-
input systems is the collection of step responses for each input channel. The duration of
simulation is determined automatically, based on the system poles and zeros.

step(sys,Tfinal) simulates the step response from t = 0 to the final time t =
Tfinal. Express Tfinal in the system time units, specified in the TimeUnit property
of sys. For discrete-time systems with unspecified sampling time (Ts = -1), step
interprets Tfinal as the number of sampling periods to simulate.

step(sys,t) uses the user-supplied time vector t for simulation. Express t in the
system time units, specified in the TimeUnit property of sys. For discrete-time models,

 step

1-709

t should be of the form Ti:Ts:Tf, where Ts is the sample time. For continuous-time
models, t should be of the form Ti:dt:Tf, where dt becomes the sample time of a
discrete approximation to the continuous system (see “Algorithms” on page 1-714). The
step command always applies the step input at t=0, regardless of Ti.

To plot the step response of several modelssys1,..., sysN on a single figure, use

step(sys1,sys2,...,sysN)

step(sys1,sys2,...,sysN,Tfinal)

step(sys1,sys2,...,sysN,t)

All of the systems plotted on a single plot must have the same number of inputs and
outputs. You can, however, plot a mix of continuous- and discrete-time systems on a
single plot. This syntax is useful to compare the step responses of multiple systems.

You can also specify a distinctive color, linestyle, marker, or all three for each system.
For example,

step(sys1,'y:',sys2,'g--')

plots the step response of sys1 with a dotted yellow line and the step response of sys2
with a green dashed line.

When invoked with output arguments:

y = step(sys,t)

[y,t] = step(sys)

[y,t] = step(sys,Tfinal)

[y,t,x] = step(sys)

step returns the output response y, the time vector t used for simulation (if not supplied
as an input argument), and the state trajectories x (for state-space models only). No
plot generates on the screen. For single-input systems, y has as many rows as time
samples (length of t), and as many columns as outputs. In the multi-input case, the
step responses of each input channel are stacked up along the third dimension of y. The
dimensions of y are then

1 Functions — Alphabetical List

1-710

() () ()lengthof t number of outputs number of inputs¥ ¥

and y(:,:,j) gives the response to a unit step command injected in the jth input
channel. Similarly, the dimensions of x are

() () ()lengthof t number of states number of inputs¥ ¥

For identified models (see idlti and idnlmodlel) [y,t,x,ysd] = step(sys) also
computes the standard deviation ysd of the response y (ysd is empty if sys does not
contain parameter covariance information).

[y,...] = step(sys,...,options) specifies additional options for computing the
step response, such as the step amplitude or input offset. Use stepDataOptions to
create the option set options.

Examples

Step Response Plot of Dynamic System

Plot the step response of the following second-order state-space model:

a = [-0.5572,-0.7814;0.7814,0];

b = [1,-1;0,2];

c = [1.9691,6.4493];

sys = ss(a,b,c,0);

step(sys)

 step

1-711

The left plot shows the step response of the first input channel, and the right plot shows
the step response of the second input channel.

Step Response Plot of Feedback Loop with Delay

Create a feedback loop with delay and plot its step response.

s = tf('s');

G = exp(-s) * (0.8*s^2+s+2)/(s^2+s);

T = feedback(ss(G),1);

step(T)

1 Functions — Alphabetical List

1-712

The system step response displayed is chaotic. The step response of systems with
internal delays may exhibit odd behavior, such as recurring jumps. Such behavior is a
feature of the system and not software anomalies.

Step Responses of Identified Models with Confidence Regions

Compare the step response of a parametric identified model to a non-parametric
(empirical) model/ Also view their 3-σ confidence regions.

load iddata1 z1

sys1 = ssest(z1,4);

parametric model

 step

1-713

sys2 = impulseest(z1);

non-parametric model

[y1, ~, ~, ysd1] = step(sys1,t);

[y2, ~, ~, ysd2] = step(sys2,t);

plot(t, y1, 'b', t, y1+3*ysd1, 'b:', t, y1-3*ysd1, 'b:')

hold on

plot(t, y2, 'g', t, y2+3*ysd2, 'g:', t, y2-3*ysd2, 'g:')

Validate Linearization of Identified Nonlinear ARX Model

Validation the linearization of a nonlinear ARX model by comparing their small
amplitude step responses.

nlsys = nlarx(z2,[4 3 10],'tree','custom',...

 {'sin(y1(t-2)*u1(t))+y1(t-2)*u1(t)+u1(t).*u1(t-13)',...

 'y1(t-5)*y1(t-5)*y1(t-1)'},'nlr',[1:5, 7 9]);

Determine an equilibrium operating point for nlsys corresponding to a steady-state
input value of 1:

u0 = 1;

[X,~,r] = findop(nlsys, 'steady', 1);

y0 = r.SignalLevels.Output;

Obtain a linear approximation of nlsys at this operating point.

sys = linearize(nlsys,u0,X)

Now validate the usefulness of sys by comparing its small-amplitude step response to
that of nlsys. The nonlinear system nlsys is operating an equilibrium level dictated
by (u0, y0). About this steady-state, we introduce a step perturbation of size 0.1. The
corresponding response is computed as follows:

opt = stepDataOptions;

opt.InputOffset = u0;

opt.StepAmplitude = 0.1;

t = (0:0.1:10)';

ynl = step(nlsys, t, opt);

1 Functions — Alphabetical List

1-714

The linear system sys expresses the relationship between the perturbations in input
to the corresponding perturbation in output. It is unaware of nonlinear system's
equilibrium values. The step response of the linear system is:

opt = stepDataOptions;

opt.StepAmplitude = 0.1;

yl = step(sys, t, opt);

To compare, add the steady-state offset, y0, to the response of the linear system:

plot(t, ynl, t, yl+y0)

legend('Nonlinear', 'Linear with offset')

Step Response of Identified Time-Series Model

Compute the step response of an identified time series model.

A time series model, also called a signal model, is one without measured input signals.
The step plot of this model uses its (unmeasured) noise channel as the input channel to
which the step signal is applied.

load iddata9

sys = ar(z9, 4);

ys is a model of the form A y(t) = e(t), where e(t) represents the noise channel.
For computation of step response, e(t) is treated as an input channel, and is named
"e@y1".

step(sys)

More About

Tips

You can change the properties of your plot, for example the units. For information on the
ways to change properties of your plots, see “Ways to Customize Plots”.

Algorithms

Continuous-time models without internal delays are converted to state space and
discretized using zero-order hold on the inputs. The sampling period, dt, is chosen

 step

1-715

automatically based on the system dynamics, except when a time vector t = 0:dt:Tf is
supplied (dt is then used as sampling period). The resulting simulation time steps t are
equisampled with spacing dt.

For systems with internal delays, Control System Toolbox software uses variable step
solvers. As a result, the time steps t are not equisampled.

References

[1] L.F. Shampine and P. Gahinet, "Delay-differential-algebraic equations in control
theory," Applied Numerical Mathematics, Vol. 56, Issues 3–4, pp. 574–588.

See Also
stepDataOptions | lsim | impulse | initial | ltiview

1 Functions — Alphabetical List

1-716

stepDataOptions

Options set for step

Syntax

opt = stepDataOptions

opt = stepDataOptions(Name,Value)

Description

opt = stepDataOptions creates the default options for step.

opt = stepDataOptions(Name,Value) creates an options set with the options
specified by one or more Name,Value pair arguments.

Input Arguments

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

'InputOffset'

Input signal level for all time t < 0, as shown in the next figure.

 stepDataOptions

1-717

Default: 0

'StepAmplitude'

Change of input signal level which occurs at time t = 0, as shown in the previous figure.

Default: 1

Output Arguments
opt

Option set containing the specified options for step.

Examples
Specify Input Offset and Step Amplitude Level

Specify the input offset and amplitude level for step response.

sys = tf(1,[1,1]);

opt = stepDataOptions('InputOffset',-1,'StepAmplitude',2);

[y,t] = step(sys,opt)

See Also
step

1 Functions — Alphabetical List

1-718

stepinfo
Rise time, settling time, and other step response characteristics

Syntax

S = stepinfo(y,t,yfinal)

S = stepinfo(y,t)

S = stepinfo(y)

S = stepinfo(sys)

S = stepinfo(...,'SettlingTimeThreshold',ST)

S = stepinfo(...,'RiseTimeLimits',RT)

Description

S = stepinfo(y,t,yfinal) takes step response data (t,y) and a steady-state value
yfinal and returns a structure S containing the following performance indicators:

• RiseTime — Rise time
• SettlingTime — Settling time
• SettlingMin — Minimum value of y once the response has risen
• SettlingMax — Maximum value of y once the response has risen
• Overshoot — Percentage overshoot (relative to yfinal)
• Undershoot — Percentage undershoot
• Peak — Peak absolute value of y
• PeakTime — Time at which this peak is reached

For SISO responses, t and y are vectors with the same length NS. For systems with NU
inputs and NY outputs, you can specify y as an NS-by-NY-by-NU array (see step) and
yfinal as an NY-by-NU array. stepinfo then returns a NY-by-NU structure array S of
performance metrics for each I/O pair.

S = stepinfo(y,t) uses the last sample value of y as steady-state value yfinal. S =
stepinfo(y) assumes t = 1:ns.

 stepinfo

1-719

S = stepinfo(sys)computes the step response characteristics for an LTI model sys
(see tf, zpk, or ss for details).

S = stepinfo(...,'SettlingTimeThreshold',ST) lets you specify the threshold
ST used in the settling time calculation. The response has settled when the error |y(t)
- yfinal| becomes smaller than a fraction ST of its peak value. The default value is
ST=0.02 (2%).

S = stepinfo(...,'RiseTimeLimits',RT) lets you specify the lower and upper
thresholds used in the rise time calculation. By default, the rise time is the time the
response takes to rise from 10 to 90% of the steady-state value (RT=[0.1 0.9]). Note
that RT(2) is also used to calculate SettlingMin and SettlingMax.

Examples

Step Response Characteristics of Fifth-Order System

Create a fifth order system and ascertain the response characteristics.

sys = tf([1 5],[1 2 5 7 2]);

S = stepinfo(sys,'RiseTimeLimits',[0.05,0.95])

These commands return the following result:

S =

 RiseTime: 7.4454

 SettlingTime: 13.9378

 SettlingMin: 2.3737

 SettlingMax: 2.5201

 Overshoot: 0.8032

 Undershoot: 0

 Peak: 2.5201

 PeakTime: 15.1869

See Also
lsiminfo | step

1 Functions — Alphabetical List

1-720

stepplot

Plot step response and return plot handle

Syntax

h = stepplot(sys)

stepplot(sys,Tfinal)

stepplot(sys,t)

stepplot(sys1,sys2,...,sysN)

stepplot(sys1,sys2,...,sysN,Tfinal)

stepplot(sys1,sys2,...,sysN,t)

stepplot(AX,...)

stepplot(..., plotoptions)

stepplot(..., dataoptions)

Description

h = stepplot(sys) plots the step response of the “dynamic system model” sys. It
also returns the plot handle h. You can use this handle to customize the plot with the
getoptions and setoptions commands. Type

help timeoptions

for a list of available plot options.

For multiinput models, independent step commands are applied to each input channel.
The time range and number of points are chosen automatically.

stepplot(sys,Tfinal) simulates the step response from t = 0 to the final time t =
Tfinal. Express Tfinal in the system time units, specified in the TimeUnit property
of sys. For discrete-time systems with unspecified sampling time (Ts = -1), stepplot
interprets Tfinal as the number of sampling intervals to simulate.

stepplot(sys,t) uses the user-supplied time vector t for simulation. Express t in
the system time units, specified in the TimeUnit property of sys. For discrete-time

 stepplot

1-721

models, t should be of the form Ti:Ts:Tf, where Ts is the sample time. For continuous-
time models, t should be of the form Ti:dt:Tf, where dt becomes the sample time of a
discrete approximation to the continuous system (see step). The stepplot command
always applies the step input at t=0, regardless of Ti.

To plot the step responses of multiple models sys1,sys2,... on a single plot, use:

stepplot(sys1,sys2,...,sysN)

stepplot(sys1,sys2,...,sysN,Tfinal)

stepplot(sys1,sys2,...,sysN,t)

You can also specify a color, line style, and marker for each system, as in

stepplot(sys1,'r',sys2,'y--',sys3,'gx')

stepplot(AX,...) plots into the axes with handle AX.

stepplot(..., plotoptions) customizes the plot appearance using the options set,
plotoptions. Use timeOptions to create the options set.

stepplot(..., dataoptions) specifies options such as the step amplitude and input
offset using the options set, dataoptions. Use stepDataOptions to create the options
set.

Examples

Normalized Response on Step Plot

Generate a step response plot for two dynamic systems.

sys1 = rss(3);

sys2 = rss(3);

h = stepplot(sys1,sys2);

1 Functions — Alphabetical List

1-722

Each step response settles at a different steady-state value. Use the plot handle to
normalize the plotted response.

setoptions(h,'Normalize','on')

 stepplot

1-723

Now, the responses settle at the same value expressed in arbitrary units.

Step Responses of Identified Models with Confidence Region

Compare the step response of a parametric identified model to a nonparametric
(empirical) model, and view their 3-σ confidence regions. (Identified models require
System Identification Toolbox™ software.)

Identify a parametric and a nonparametric model from sample data.

load iddata1 z1

sys1 = ssest(z1,4);

sys2 = impulseest(z1);

1 Functions — Alphabetical List

1-724

Plot the step responses of both identified models. Use the plot handle to display the 3-σ
confidence regions.

t = -1:0.1:5;

h = stepplot(sys1,sys2,t);

showConfidence(h,3)

legend('parametric','nonparametric')

 stepplot

1-725

The nonparametric model sys2 shows higher uncertainty.

Step Response of Nonlinear Model

Plot the step response of a nonlinear (Hammerstein-Wiener) model using a starting
offset of 2 and step amplitude of 0.5. (Hammerstein-Weiner models require System
Identification Toolbox software.)

load twotankdata

z = iddata(y, u, 0.2, 'Name', 'Two tank system');

sys = nlhw(z, [1 5 3], pwlinear, poly1d);

dataoptions = stepDataOptions('InputOffset', 2, 'StepAmplitude', 0.5);

stepplot(sys,60,dataoptions);

More About

Tips

You can change the properties of your plot, for example the units. For information on the
ways to change properties of your plots, see “Ways to Customize Plots”.

See Also
setoptions | getoptions | step

1 Functions — Alphabetical List

1-726

strseq
Create sequence of indexed strings

Syntax

strvec = strseq(STR,INDICES)

Description

strvec = strseq(STR,INDICES) creates a sequence of indexed strings in the string
vector strvec by appending the integer values INDICES to the string STR.

Note: You can use strvec to aid in system interconnection. For an example, see the
sumblk reference page.

Examples

Create a string vector by indexing the string 'e' at 1, 2, and 4.

strseq('e',[1 2 4])

This command returns the following result:

ans =

 'e1'

 'e2'

 'e4'

See Also
strcat | connect

 sumblk

1-727

sumblk

Summing junction for name-based interconnections

Syntax

S = sumblk(formula)

S = sumblk(formula,signalsize)

S = sumblk(formula,signames1,signames2,...)

Description

S = sumblk(formula) creates the transfer function, S, of the summing junction
described by the string formula. The string formula specifies an equation that relates the
scalar input and output signals of S.

S = sumblk(formula,signalsize) returns a vector-valued summing junction. The
input and output signals are vectors with signalsize elements.

S = sumblk(formula,signames1,signames2,...) replaces aliases (signal names
beginning with %) in formula by the signal names signames. The number of signames
arguments must match the number of aliases in formula. The first alias in formula is
replaced by signames1, the second by signames2, and so on.

Input Arguments

formula

String specifying the equation that relates the input and output signals of the summing
junction transfer function S. For example, the following command:

S = sumblk('e = r - y + d')

creates a summing junction with input names 'r', 'y', and 'd', output name 'e' and
equation e = r-y+d.

1 Functions — Alphabetical List

1-728

If you specify a signalsize greater than 1, the inputs and outputs of S are vector-valued
signals. sumblk automatically performs vector expansion of the signal names of S. For
example, the following command:

S = sumblk('v = u + d',2)

specifies a summing junction with input names {'u(1)';'u(2)';'d(1)';'d(2)'}
and output names {'v(1)';'v(2)'}. The formulas of this summing junction are v(1)
= u(1) + d(1); v(2) = u(2) + d(2).

You can use one or more aliases in formula to refer to signal names defined in a variable.
An alias is a signal name that begins with %. When formula contains aliases, sumblk
replaces each alias with the corresponding signames argument.

Aliases are useful when you want to name individual entries in a vector-valued signal.
Aliases also allow you to use input or output names of existing models. For example,
if C and G are dynamic system models with nonempty InputName and OutputName
properties, respectively, you can create a summing junction using the following
expression.

S = sumblk('%e = r - %y',C.InputName,G.OutputName)

sumblk uses the values of C.InputName and G.OutputName in place of %e and %y,
respectively. The vector dimension of C.InputName and G.OutputName must match.
sumblk assigns the signal r the same dimension.

signalsize

Number of elements in each input and output signal of S. Setting signalsize greater than
1 lets you specify a summing junction that operates on vector-valued signals.

Default: 1

signames

Signal names to replace one alias (signal name beginning with %) in the formula string.
You must provide one signames argument for each alias in formula.

Specify signames as:

• A cell array of name strings.
• The InputName or OutputName property of a model in the MATLAB workspace. For

example:

 sumblk

1-729

S = sumblk('%e = r - y',C.InputName)

This command creates a summing junction whose outputs have the same name as the
inputs of the model C in the MATLAB workspace.

Output Arguments

S

Transfer function for the summing junction, represented as a MIMO tf model object.

Examples

Summing Junction with Scalar-Valued Signals

Create the summing junction of the following illustration. All signals are scalar-valued.

S

u
1

u
2

u
3

u

This summing junction has the formula u = u1 + u2 + u3.

S = sumblk('u = u1+u2+u3');

S is the transfer function (tf) representation of the sum u = u1 + u2 + u3. The
transfer function S gets its input and output names from the formula string.

S.OutputName,S.Inputname

ans =

 'u'

ans =

 'u1'

 'u2'

1 Functions — Alphabetical List

1-730

 'u3'

Summing Junction with Vector-Valued Signals

Create the summing junction v = u - d where u,d,v are vector-valued signals of
length 2.

S = sumblk('v = u-d',2);

sumblk automatically performs vector expansion of the signal names of S.

S.OutputName,S.Inputname

ans =

 'v(1)'

 'v(2)'

ans =

 'u(1)'

 'u(2)'

 'd(1)'

 'd(2)'

Summing Junction with Vector-Valued Signals That Have Specified Signal
Names

Create the summing junction

e setpoint alpha d

e setpoint q d

1 1 1

2 2 2

() = () - + ()

() = () - + ()

The signals alpha and q have custom names that are not merely the vector expansion
of a single signal name. Therefore, use an alias in the formula specifying the summing
junction.

S = sumblk('e = setpoint - %y + d', {'alpha';'q'});

sumblk replaces the alias %y with the cell array {'alpha';'q'}.

S.OutputName,S.Inputname

 sumblk

1-731

ans =

 'e(1)'

 'e(2)'

ans =

 'setpoint(1)'

 'setpoint(2)'

 'alpha'

 'q'

 'd(1)'

 'd(2)'

More About

Tips

• Use sumblk in conjunction with connect to interconnect dynamic system models and
derive aggregate models for block diagrams.

• “Multi-Loop Control System”
• “MIMO Control System”

See Also
connect | series | parallel | strseq

1 Functions — Alphabetical List

1-732

tf
Create transfer function model, convert to transfer function model

Syntax

sys = tf(num,den)

sys = tf(num,den,Ts)

sys = tf(M)

sys = tf(num,den,ltisys)

tfsys = tf(sys)

tfsys = tf(sys, 'measured')

tfsys = tf(sys, 'noise')

tfsys = tf(sys, 'augmented')

Description

Use tf to create real- or complex-valued transfer function models (TF objects) or to
convert state-space or zero-pole-gain models to transfer function form. You can also
use tf to create generalized state-space (genss) models or uncertain state-space (uss)
models.

Creation of Transfer Functions

sys = tf(num,den) creates a continuous-time transfer function with numerator(s)
and denominator(s) specified by num and den. The output sys is:

• A tf model object, when num and den are numeric arrays.
• A generalized state-space model (genss) when num or den include tunable

parameters, such as realp parameters or generalized matrices (genmat).
• An uncertain state-space model (uss) when num or den are uncertain (requires

Robust Control Toolbox software).

In the SISO case, num and den are the real- or complex-valued row vectors of numerator
and denominator coefficients ordered in descending powers of s. These two vectors need
not have equal length and the transfer function need not be proper. For example, h =
tf([1 0],1) specifies the pure derivative h(s) = s.

 tf

1-733

To create MIMO transfer functions, using one of the following approaches:

• Concatenate SISO tf models.
• Use the tf command with cell array arguments. In this case, num and den are cell

arrays of row vectors with as many rows as outputs and as many columns as inputs.
The row vectors num{i,j} and den{i,j} specify the numerator and denominator of
the transfer function from input j to output i.

For examples of creating MIMO transfer functions, see “Examples” on page 1-735 and
“MIMO Transfer Function Model” in the Control System Toolbox User Guide.

If all SISO entries of a MIMO transfer function have the same denominator, you can set
den to the row vector representation of this common denominator. See "Examples" for
more details.

sys = tf(num,den,Ts) creates a discrete-time transfer function with sample time
Ts (in seconds). Set Ts = -1 to leave the sample time unspecified. The input arguments
num and den are as in the continuous-time case and must list the numerator and
denominator coefficients in descending powers of z.

sys = tf(M) creates a static gain M (scalar or matrix).

sys = tf(num,den,ltisys) creates a transfer function with properties inherited
from the dynamic system model ltisys (including the sample time).

There are several ways to create arrays of transfer functions. To create arrays of SISO
or MIMO TF models, either specify the numerator and denominator of each SISO entry
using multidimensional cell arrays, or use a for loop to successively assign each TF
model in the array. See “Model Arrays”.

Any of the previous syntaxes can be followed by property name/property value pairs

'Property',Value

Each pair specifies a particular property of the model, for example, the input names or
the transfer function variable. For information about the properties of tf objects, see
“Properties” on page 1-740. Note that

sys = tf(num,den,'Property1',Value1,...,'PropertyN',ValueN)

is a shortcut for

sys = tf(num,den)

1 Functions — Alphabetical List

1-734

set(sys,'Property1',Value1,...,'PropertyN',ValueN)

Transfer Functions as Rational Expressions in s or z

You can also use real- or complex-valued rational expressions to create a TF model. To do
so, first type either:

• s = tf('s') to specify a TF model using a rational function in the Laplace variable,
s.

• z = tf('z',Ts) to specify a TF model with sample time Ts using a rational function
in the discrete-time variable, z.

Once you specify either of these variables, you can specify TF models directly as rational
expressions in the variable s or z by entering your transfer function as a rational
expression in either s or z.

Conversion to Transfer Function

tfsys = tf(sys) converts the dynamic system model sys to transfer function form.
The output tfsys is a tf model object representing sys expressed as a transfer function.

If sys is a model with tunable components, such as a genss, genmat, ltiblock.tf, or
ltiblock.ss model, the resulting transfer function tfsys takes the current values of
the tunable components.

Conversion of Identified Models

An identified model is represented by an input-output equation of the form y(t) =
Gu(t) + He(t), where u(t) is the set of measured input channels and e(t) represents
the noise channels. If Λ = LL' represents the covariance of noise e(t), this equation can
also be written as: y(t) = Gu(t) + HLv(t), where cov(v(t)) = I.

tfsys = tf(sys), or tfsys = tf(sys, 'measured') converts the measured
component of an identified linear model into the transfer function form. sys is a model
of type idss, idproc, idtf, idpoly, or idgrey. tfsys represents the relationship
between u and y.

tfsys = tf(sys, 'noise') converts the noise component of an identified linear
model into the transfer function form. It represents the relationship between the noise
input, v(t) and output, y_noise = HL v(t). The noise input channels belong to the

 tf

1-735

InputGroup 'Noise'. The names of the noise input channels are v@yname, where
yname is the name of the corresponding output channel. tfsys has as many inputs as
outputs.

tfsys = tf(sys, 'augmented') converts both the measured and noise dynamics
into a transfer function. tfsys has ny+nu inputs such that the first nu inputs represent
the channels u(t) while the remaining by channels represent the noise channels
v(t). tfsys.InputGroup contains 2 input groups- 'measured' and 'noise'.
tfsys.InputGroup.Measured is set to 1:nu while tfsys.InputGroup.Noise is set
to nu+1:nu+ny. tfsys represents the equation y(t) = [G HL] [u; v].

Tip An identified nonlinear model cannot be converted into a transfer function. Use
linear approximation functions such as linearize and linapp.

Creation of Generalized State-Space Models

You can use the syntax:

gensys = tf(num,den)

to create a Generalized state-space (genss) model when one or more of the entries num
and den depends on a tunable realp or genmat model. For more information about
Generalized state-space models, see “Models with Tunable Coefficients”.

Examples

Example 1

Transfer Function Model with One-Input Two-Outputs

Create the one-input, two-output transfer function

H p

p

p p

p

() =

+

+ +

È

Î

Í
Í
Í
Í

˘

˚

˙
˙
˙
˙

1

2 2

1

2

1 Functions — Alphabetical List

1-736

with input current and outputs torque and ang velocity.

To do this, enter

num = {[1 1] ; 1};

den = {[1 2 2] ; [1 0]};

H = tf(num,den,'inputn','current',...

 'outputn',{'torque' 'ang. velocity'},...

 'variable','p')

These commands produce the result:

Transfer function from input "current" to output...

 p + 1

 torque: -------------

 p^2 + 2 p + 2

 1

 ang. velocity: -

 p

Setting the 'variable' property to 'p' causes the result to be displayed as a transfer
function of the variable p.

Example 2

Transfer Function Model Using Rational Expression

To use a rational expression to create a SISO TF model, type

s = tf('s');

H = s/(s^2 + 2*s +10);

This produces the same transfer function as

h = tf([1 0],[1 2 10]);

Example 3

Multiple-Input Multiple-Output Transfer Function Model

Specify the discrete MIMO transfer function

 tf

1-737

H z
z

z

z

z

z z

() = + +
- +

+ +

È

Î

Í
Í
Í
Í

˘

˚

˙
˙
˙
˙

1

0 3 0 3

2

0 3

3

0 3

. .

. .

with common denominator d (z) = z + 0.3 and sample time of 0.2 seconds.
nums = {1 [1 0];[-1 2] 3};

Ts = 0.2;

H = tf(nums,[1 0.3],Ts) % Note: row vector for common den. d(z)

Example 4

Convert State-Space Model to Transfer Function

Compute the transfer function of the state-space model with the following data.

A B C D=
- -

-

È

Î
Í

˘

˚
˙ =

-

È

Î
Í

˘

˚
˙ = [] = []

2 1

1 2

1 1

2 1
1 0 0 1, , , .

To do this, type

sys = ss([-2 -1;1 -2],[1 1;2 -1],[1 0],[0 1]);

tf(sys)

These commands produce the result:

Transfer function from input 1 to output:

s - 4.441e-016

s^2 + 4 s + 5

Transfer function from input 2 to output:

s^2 + 5 s + 8

s^2 + 4 s + 5

Example 5

Array of Transfer Function Models

1 Functions — Alphabetical List

1-738

You can use a for loop to specify a 10-by-1 array of SISO TF models.

H = tf(zeros(1,1,10));

s = tf('s')

for k=1:10,

 H(:,:,k) = k/(s^2+s+k);

end

The first statement pre-allocates the TF array and fills it with zero transfer functions.

Example 6

Tunable Low-Pass Filter

This example shows how to create the low-pass filter F = a/(s + a) with one tunable
parameter a.

You cannot use ltiblock.tf to represent F, because the numerator and denominator
coefficients of an ltiblock.tf block are independent. Instead, construct F using the
tunable real parameter object realp.

1 Create a tunable real parameter.

a = realp('a',10);

The realp object a is a tunable parameter with initial value 10.
2 Use tf to create the tunable filter F:

F = tf(a,[1 a]);

F is a genss object which has the tunable parameter a in its Blocks property. You can
connect F with other tunable or numeric models to create more complex models of control
systems. For an example, see “Control System with Tunable Components”.

Example 7

Extract the measured and noise components of an identified polynomial model into two
separate transfer functions. The former (measured component) can serve as a plant
model while the latter can serve as a disturbance model for control system design.

load icEngine;

z = iddata(y,u,0.04);

 tf

1-739

nb = 2; nf = 2; nc = 1; nd = 3; nk = 3;

sys = bj(z, [nb nc nd nf nk]);

sys is a model of the form: y(t) = B/F u(t) + C/D e(t), where B/F represents the
measured component and C/D the noise component.

sysMeas = tf(sys, 'measured')

sysNoise = tf(sys, 'noise')

Alternatively, use can simply use tf(sys) to extract the measured component.

Discrete-Time Conventions

The control and digital signal processing (DSP) communities tend to use different
conventions to specify discrete transfer functions. Most control engineers use the z
variable and order the numerator and denominator terms in descending powers of z, for
example,

h z
z

z z
() =

+ +

2

2
2 3

.

The polynomials z2 and z2 + 2z + 3 are then specified by the row vectors [1 0 0] and [1
2 3], respectively. By contrast, DSP engineers prefer to write this transfer function as

h z

z z

-

- -() =
+ +

1

1 2

1

1 2 3

and specify its numerator as 1 (instead of [1 0 0]) and its denominator as [1 2 3].

tf switches convention based on your choice of variable (value of the 'Variable'
property).

Variable Convention

'z' (default), 'q' Use the row vector [ak ... a1 a0] to specify the polynomial
a z a z ak

k
+ + +...

1 0 (coefficients ordered in descending powers
of z or q).

1 Functions — Alphabetical List

1-740

Variable Convention

'z^-1' Use the row vector [b0 b1 ... bk] to specify the polynomial
b b z b zk

k
0 1

1
+ + +

- -
... (coefficients in ascending powers of z-1).

For example,

g = tf([1 1],[1 2 3],0.1);

specifies the discrete transfer function

g z
z

z z

() =
+

+ +

1

2 3
2

because z is the default variable. In contrast,

h = tf([1 1],[1 2 3],0.1,'variable','z^-1');

uses the DSP convention and creates

h z
z

z z
zg z-

-

- -() =
+

+ +
= ()1

1

1 2

1

1 2 3

.

See also filt for direct specification of discrete transfer functions using the DSP
convention.

Note that tf stores data so that the numerator and denominator lengths are made equal.
Specifically, tf stores the values

num = [0 1 1]; den = [1 2 3];

for g (the numerator is padded with zeros on the left) and the values

num = [1 1 0]; den = [1 2 3];

for h (the numerator is padded with zeros on the right).

Properties

tf objects have the following properties:

 tf

1-741

num

Transfer function numerator coefficients.

For SISO transfer functions, num is a row vector of polynomial coefficients in order of
descending power (for Variable values s, z, p, or q) or in order of ascending power (for
Variable values z^-1 or q^-1).

For MIMO transfer functions with Ny outputs and Nu inputs, num is a Ny-by-Nu cell array
of the numerator coefficients for each input/output pair.

den

Transfer function denominator coefficients.

For SISO transfer functions, den is a row vector of polynomial coefficients in order of
descending power (for Variable values s, z, p, or q) or in order of ascending power (for
Variable values z^-1 or q^-1).

For MIMO transfer functions with Ny outputs and Nu inputs, den is a Ny-by-Nu cell array
of the denominator coefficients for each input/output pair.

Variable

String specifying the transfer function display variable. Variable can take the following
values:

• 's' — Default for continuous-time models
• 'z' — Default for discrete-time models
• 'p' — Equivalent to 's'
• 'q' — Equivalent to 'z'
• 'z^-1' — Inverse of 'z'
• 'q^-1' — Equivalent to 'z^-1'

The value of Variable is reflected in the display, and also affects the interpretation
of the num and den coefficient vectors for discrete-time models. For Variable = 'z'
or 'q', the coefficient vectors are ordered in descending powers of the variable. For
Variable = 'z^-1' or 'q^-1', the coefficient vectors are ordered as ascending powers
of the variable.

1 Functions — Alphabetical List

1-742

Default: 's'

ioDelay

Transport delays. ioDelay is a numeric array specifying a separate transport delay for
each input/output pair.

For continuous-time systems, specify transport delays in the time unit stored in the
TimeUnit property. For discrete-time systems, specify transport delays in integer
multiples of the sampling period, Ts.

For a MIMO system with Ny outputs and Nu inputs, set ioDelay to a Ny-by-Nu array.
Each entry of this array is a numerical value that represents the transport delay for the
corresponding input/output pair. You can also set ioDelay to a scalar value to apply the
same delay to all input/output pairs.

Default: 0 for all input/output pairs

InputDelay

Input delay for each input channel, specified as a scalar value or numeric vector. For
continuous-time systems, specify input delays in the time unit stored in the TimeUnit
property. For discrete-time systems, specify input delays in integer multiples of the
sampling period Ts. For example, InputDelay = 3 means a delay of three sampling
periods.

For a system with Nu inputs, set InputDelay to an Nu-by-1 vector. Each entry of this
vector is a numerical value that represents the input delay for the corresponding input
channel.

You can also set InputDelay to a scalar value to apply the same delay to all channels.

Default: 0

OutputDelay

Output delays. OutputDelay is a numeric vector specifying a time delay for each output
channel. For continuous-time systems, specify output delays in the time unit stored
in the TimeUnit property. For discrete-time systems, specify output delays in integer
multiples of the sampling period Ts. For example, OutputDelay = 3 means a delay of
three sampling periods.

 tf

1-743

For a system with Ny outputs, set OutputDelay to an Ny-by-1 vector, where each entry
is a numerical value representing the output delay for the corresponding output channel.
You can also set OutputDelay to a scalar value to apply the same delay to all channels.

Default: 0 for all output channels

Ts

Sampling time. For continuous-time models, Ts = 0. For discrete-time models, Ts is
a positive scalar representing the sampling period. This value is expressed in the unit
specified by the TimeUnit property of the model. To denote a discrete-time model with
unspecified sampling time, set Ts = -1.

Changing this property does not discretize or resample the model. Use c2d and d2c to
convert between continuous- and discrete-time representations. Use d2d to change the
sampling time of a discrete-time system.

Default: 0 (continuous time)

TimeUnit

String representing the unit of the time variable. This property specifies the units for the
time variable, the sampling time Ts, and any time delays in the model. Use any of the
following values:

• 'nanoseconds'

• 'microseconds'

• 'milliseconds'

• 'seconds'

• 'minutes'

• 'hours'

• 'days'

• 'weeks'

• 'months'

• 'years'

Changing this property has no effect on other properties, and therefore changes the
overall system behavior. Use chgTimeUnit to convert between time units without
modifying system behavior.

1 Functions — Alphabetical List

1-744

Default: 'seconds'

InputName

Input channel names. Set InputName to a string for single-input model. For a multi-
input model, set InputName to a cell array of strings.

Alternatively, use automatic vector expansion to assign input names for multi-input
models. For example, if sys is a two-input model, enter:

sys.InputName = 'controls';

The input names automatically expand to {'controls(1)';'controls(2)'}.

You can use the shorthand notation u to refer to the InputName property. For example,
sys.u is equivalent to sys.InputName.

Input channel names have several uses, including:

• Identifying channels on model display and plots
• Extracting subsystems of MIMO systems
• Specifying connection points when interconnecting models

Default: Empty string '' for all input channels

InputUnit

Input channel units. Use InputUnit to keep track of input signal units. For a single-
input model, set InputUnit to a string. For a multi-input model, set InputUnit to a cell
array of strings. InputUnit has no effect on system behavior.

Default: Empty string '' for all input channels

InputGroup

Input channel groups. The InputGroup property lets you assign the input channels of
MIMO systems into groups and refer to each group by name. Specify input groups as a
structure. In this structure, field names are the group names, and field values are the
input channels belonging to each group. For example:

sys.InputGroup.controls = [1 2];

sys.InputGroup.noise = [3 5];

 tf

1-745

creates input groups named controls and noise that include input channels 1, 2 and
3, 5, respectively. You can then extract the subsystem from the controls inputs to all
outputs using:

sys(:,'controls')

Default: Struct with no fields

OutputName

Output channel names. Set OutputName to a string for single-output model. For a multi-
output model, set OutputName to a cell array of strings.

Alternatively, use automatic vector expansion to assign output names for multi-output
models. For example, if sys is a two-output model, enter:

sys.OutputName = 'measurements';

The output names to automatically expand to
{'measurements(1)';'measurements(2)'}.

You can use the shorthand notation y to refer to the OutputName property. For example,
sys.y is equivalent to sys.OutputName.

Output channel names have several uses, including:

• Identifying channels on model display and plots
• Extracting subsystems of MIMO systems
• Specifying connection points when interconnecting models

Default: Empty string '' for all input channels

OutputUnit

Output channel units. Use OutputUnit to keep track of output signal units. For
a single-output model, set OutputUnit to a string. For a multi-output model, set
OutputUnit to a cell array of strings. OutputUnit has no effect on system behavior.

Default: Empty string '' for all input channels

OutputGroup

Output channel groups. The OutputGroup property lets you assign the output channels
of MIMO systems into groups and refer to each group by name. Specify output groups as

1 Functions — Alphabetical List

1-746

a structure. In this structure, field names are the group names, and field values are the
output channels belonging to each group. For example:

sys.OutputGroup.temperature = [1];

sys.InputGroup.measurement = [3 5];

creates output groups named temperature and measurement that include output
channels 1, and 3, 5, respectively. You can then extract the subsystem from all inputs to
the measurement outputs using:

sys('measurement',:)

Default: Struct with no fields

Name

System name. Set Name to a string to label the system.

Default: ''

Notes

Any text that you want to associate with the system. Set Notes to a string or a cell array
of strings.

Default: {}

UserData

Any type of data you wish to associate with system. Set UserData to any MATLAB data
type.

Default: []

SamplingGrid

Sampling grid for model arrays, specified as a data structure.

For model arrays that are derived by sampling one or more independent variables,
this property tracks the variable values associated with each model in the array. This
information appears when you display or plot the model array. Use this information to
trace results back to the independent variables.

Set the field names of the data structure to the names of the sampling variables. Set
the field values to the sampled variable values associated with each model in the array.

 tf

1-747

All sampling variables should be numeric and scalar valued, and all arrays of sampled
values should match the dimensions of the model array.

For example, suppose you create a 11-by-1 array of linear models, sysarr, by taking
snapshots of a linear time-varying system at times t = 0:10. The following code stores
the time samples with the linear models.

 sysarr.SamplingGrid = struct('time',0:10)

Similarly, suppose you create a 6-by-9 model array, M, by independently sampling two
variables, zeta and w. The following code attaches the (zeta,w) values to M.

[zeta,w] = ndgrid(<6 values of zeta>,<9 values of w>)

M.SamplingGrid = struct('zeta',zeta,'w',w)

When you display M, each entry in the array includes the corresponding zeta and w
values.

M

M(:,:,1,1) [zeta=0.3, w=5] =

 25

 s^2 + 3 s + 25

M(:,:,2,1) [zeta=0.35, w=5] =

 25

 s^2 + 3.5 s + 25

...

Default: []

More About

Algorithms

tf uses the MATLAB function poly to convert zero-pole-gain models, and the functions
zero and pole to convert state-space models.

1 Functions — Alphabetical List

1-748

• “What Are Model Objects?”
• “Transfer Functions”

See Also
filt | frd | get | set | ss | tfdata | zpk | genss | realp | genmat |
ltiblock.tf

Tutorials
• “Transfer Function Model Using Numerator and Denominator Coefficients”
• “Discrete-Time Transfer Function Model”
• “MIMO Transfer Function Model”

 tfdata

1-749

tfdata
Access transfer function data

Syntax

[num,den] = tfdata(sys)

[num,den,Ts] = tfdata(sys)

[num,den,Ts,sdnum,sdden]=tfdata(sys)

[num,den,Ts,...]=tfdata(sys,J1,...,Jn)

Description

[num,den] = tfdata(sys) returns the numerator(s) and denominator(s) of the
transfer function for the TF, SS or ZPK model (or LTI array of TF, SS or ZPK models)
sys. For single LTI models, the outputs num and den of tfdata are cell arrays with the
following characteristics:

• num and den have as many rows as outputs and as many columns as inputs.
• The (i,j) entries num{i,j} and den{i,j} are row vectors specifying the

numerator and denominator coefficients of the transfer function from input j to
output i. These coefficients are ordered in descending powers of s or z.

For arrays sys of LTI models, num and den are multidimensional cell arrays with the
same sizes as sys.

If sys is a state-space or zero-pole-gain model, it is first converted to transfer function
form using tf. For more information on the format of transfer function model data, see
the tf reference page.

For SISO transfer functions, the syntax

[num,den] = tfdata(sys,'v')

forces tfdata to return the numerator and denominator directly as row vectors rather
than as cell arrays (see example below).

[num,den,Ts] = tfdata(sys) also returns the sample time Ts.

1 Functions — Alphabetical List

1-750

[num,den,Ts,sdnum,sdden]=tfdata(sys) also returns the uncertainties in the
numerator and denominator coefficients of identified system sys. sdnum{i,j}(k) is
the 1 standard uncertainty in the value num{i,j}(k) and sdden{i,j}(k) is the 1
standard uncertainty in the value den{i,j}(k). If sys does not contain uncertainty
information, sdnum and sdden are empty ([]).

[num,den,Ts,...]=tfdata(sys,J1,...,Jn) extracts the data for the
(J1,...,JN)entry in the model array sys.

You can access the remaining LTI properties of sys with get or by direct referencing, for
example,

sys.Ts

sys.variable

Examples

Example 1

Given the SISO transfer function

h = tf([1 1],[1 2 5])

you can extract the numerator and denominator coefficients by typing

[num,den] = tfdata(h,'v')

num =

 0 1 1

den =

 1 2 5

This syntax returns two row vectors.

If you turn h into a MIMO transfer function by typing

H = [h ; tf(1,[1 1])]

the command

[num,den] = tfdata(H)

 tfdata

1-751

now returns two cell arrays with the numerator/denominator data for each SISO entry.
Use celldisp to visualize this data. Type

celldisp(num)

This command returns the numerator vectors of the entries of H.

num{1} =

 0 1 1

num{2} =

 0 1

Similarly, for the denominators, type

celldisp(den)

den{1} =

 1 2 5

den{2} =

 1 1

Example 2

Extract the numerator, denominator and their standard deviations for a 2-input, 1
output identified transfer function.

load iddata7

transfer function model

sys1 = tfest(z7, 2, 1, 'InputDelay',[1 0]);

an equivalent process model

sys2 = procest(z7, {'P2UZ', 'P2UZ'}, 'InputDelay',[1 0]);

[num1, den1, ~, dnum1, dden1] = tfdata(sys1);

[num2, den2, ~, dnum2, dden2] = tfdata(sys2);

See Also
ssdata | zpkdata | get | tf

1 Functions — Alphabetical List

1-752

thiran
Generate fractional delay filter based on Thiran approximation

Syntax

sys = thiran(tau, Ts)

Description

sys = thiran(tau, Ts) discretizes the continuous-time delay tau using a Thiran
filter to approximate the fractional part of the delay. Ts specifies the sampling time.

Input Arguments

tau

Time delay to discretize.

Ts

Sampling time.

Output Arguments

sys

Discrete-time tf object.

Examples

Approximate and discretize a time delay that is a noninteger multiple of the target
sample time.

 thiran

1-753

sys1 = thiran(2.4, 1)

Transfer function:

0.004159 z^3 - 0.04813 z^2 + 0.5294 z + 1

 z^3 + 0.5294 z^2 - 0.04813 z + 0.004159

Sampling time: 1

The time delay is 2.4 s, and the sample time is 1 s. Therefore, sys1 is a discrete-time
transfer function of order 3.

Discretize a time delay that is an integer multiple of the target sample time.

sys2 = thiran(10, 1)

Transfer function:

 1

z^10

Sampling time: 1

More About

Tips

• If tau is an integer multiple of Ts, then sys represents the pure discrete delay
z–N, with N = tau/Ts. Otherwise, sys is a discrete-time, all-pass, infinite impulse
response (IIR) filter of order ceil(tau/Ts).

• thiran approximates and discretizes a pure time delay. To approximate a pure
continuous-time time delay without discretizing, use pade. To discretize continuous-
time models having time delays, use c2d.

Algorithms

The Thiran fractional delay filter has the following form:

H z
a z a z a

a z a z a

N
N

N
N

N N

N

() =
+ + +

+ + +

-
-

-

1
1

1

0 1

1

L

L

.

1 Functions — Alphabetical List

1-754

The coefficients a0, ..., aN are given by:

a
N

k

D N i

D N k i
k N

a

k

k

i

N

= -() Ê

Ë
Á

ˆ

¯
˜

- +
- + +

"

=
=
’1 1 2

1

0

0

, : , , ,…

where D = τ/Ts and N = ceil(D) is the filter order. See [1].

References

[1] T. Laakso, V. Valimaki, “Splitting the Unit Delay”, IEEE Signal Processing Magazine,
Vol. 13, No. 1, p.30-60, 1996.

See Also
c2d | pade | tf

 timeoptions

1-755

timeoptions
Create list of time plot options

Syntax

P = timeoptions

P = timeoptions('cstprefs')

Description

P = timeoptions returns a list of available options for time plots with default values
set. You can use these options to customize the time value plot appearance from the
command line.

P = timeoptions('cstprefs') initializes the plot options you selected in the Control
System Toolbox Preferences Editor. For more information about the editor, see “Toolbox
Preferences Editor” in the User's Guide documentation.

This table summarizes the available time plot options.

Option Description

Title, XLabel, YLabel Label text and style
TickLabel Tick label style
Grid Show or hide the grid

Specified as one of the following strings:
'off' | 'on'
Default: 'off'

XlimMode, YlimMode Limit modes
Xlim, Ylim Axes limits
IOGrouping Grouping of input-output pairs

Specified as one of the following strings:
'none' |'inputs'|'output'|'all'
Default: 'none'

InputLabels, OutputLabels Input and output label styles

1 Functions — Alphabetical List

1-756

Option Description

InputVisible, OutputVisible Visibility of input and output channels
Normalize Normalize responses

Specified as one of the following strings:
'on' |'off'
Default: 'off'

SettleTimeThreshold Settling time threshold
RiseTimeLimits Rise time limits
TimeUnits Time units, specified as one of the following

strings:

• 'nanoseconds'

• 'microseconds'

• 'milliseconds'

• 'seconds'

• 'minutes'

• 'hours'

• 'days'

• 'weeks'

• 'months'

• 'years'

Default: 'seconds'

You can also specify 'auto' which uses
time units specified in the TimeUnit
property of the input system. For multiple
systems with different time units, the units
of the first system is used.

Examples

In this example, enable the normalized response option before creating a plot.
P = timeoptions;

 timeoptions

1-757

% Set normalize response to on in options

P.Normalize = 'on';

% Create plot with the options specified by P

h = stepplot(tf(10,[1,1]),tf(5,[1,5]),P);

The following step plot is created with the responses normalized.

See Also
impulseplot | lsimplot | setoptions | stepplot | getoptions | initialplot

1 Functions — Alphabetical List

1-758

totaldelay
Total combined I/O delays for LTI model

Syntax

td = totaldelay(sys)

Description

td = totaldelay(sys) returns the total combined I/O delays for an LTI model
sys. The matrix td combines contributions from the InputDelay, OutputDelay, and
ioDelayMatrix properties.

Delays are expressed in seconds for continuous-time models, and as integer multiples
of the sample period for discrete-time models. To obtain the delay times in seconds,
multiply td by the sample time sys.Ts.

Examples
sys = tf(1,[1 0]); % TF of 1/s

sys.inputd = 2; % 2 sec input delay

sys.outputd = 1.5; % 1.5 sec output delay

td = totaldelay(sys)

td =

 3.5000

The resulting I/O map is

e

s

e e

s

s s s− − −× =2 1 5 3 51 1. .

This is equivalent to assigning an I/O delay of 3.5 seconds to the original model sys.

See Also
hasdelay | absorbDelay

 tzero

1-759

tzero
Invariant zeros of linear system

Syntax

z = tzero(sys)

z = tzero(A,B,C,D,E)

z = tzero(___ ,tol)

[z,nrank] = tzero(___)

Description

z = tzero(sys) returns the invariant zeros of the multi-input, multi-output (MIMO)
dynamic system, sys. If sys is a minimal realization, the invariant zeros coincide with the
transmission zeros of sys.

z = tzero(A,B,C,D,E) returns the invariant zeros of the state-space model

E
dx

dt
Ax Bu

y Cx Du

= +

= + .

Omit E for an explicit state-space model (E = I).

z = tzero(___ ,tol) specifies the relative tolerance, tol, controlling rank decisions.

[z,nrank] = tzero(___) also returns the normal rank of the transfer function of sys
or of the transfer function H(s) = D + C(sE – A)–1B.

Input Arguments

sys

MIMO “dynamic system model”. If sys is not a state-space model, then tzero computes
tzero(ss(sys)).

1 Functions — Alphabetical List

1-760

A,B,C,D,E

State-space matrices describing the linear system

E
dx

dt
Ax Bu

y Cx Du

= +

= + .

tzero does not scale the state-space matrices when you use the syntax z =
tzero(A,B,C,D,E). Use prescale if you want to scale the matrices before using
tzero.

Omit E to use E = I.

tol

Relative tolerance controlling rank decisions. Increasing tolerance helps detect
nonminimal modes and eliminate very large zeros (near infinity). However, increased
tolerance might artificially inflate the number of transmission zeros.

Default: eps^(3/4)

Output Arguments

z

Column vector containing the invariant zeros of sys or the state-space model described by
A,B,C,D,E.

nrank

Normal rank of the transfer function of sys or of the transfer function
H(s) = D + C(sE – A)–1B. The normal rank is the rank for values of s other than the
transmission zeros.

To obtain a meaningful result for nrank, the matrix s*E-A must be regular (invertible
for most values of s). In other words, sys or the system described by A,B,C,D,E must have
a finite number of poles.

 tzero

1-761

Examples
Transmission Zeros of MIMO Transfer Function

Find the invariant zeros of a MIMO transfer function and confirm that they coincide with
the transmission zeros.

Create a MIMO transfer function, and locate its invariant zeros.

s = tf('s');

H = [1/(s+1) 1/(s+2);1/(s+3) 2/(s+4)];

z = tzero(H)

z =

 -2.5000 + 1.3229i

 -2.5000 - 1.3229i

The output is a column vector listing the locations of the invariant zeros of H. This output
shows that H a has complex pair of invariant zeros.

Check whether the first invariant zero is a transmission zero of H.

If z(1) is a transmission zero of H, then H drops rank at s = z(1).

H1 = evalfr(H,z(1));

svd(H1)

ans =

 1.5000

 0.0000

H1 is the transfer function, H, evaluated at s = z(1). H1 has a zero singular value,
indicating that H drops rank at that value of s. Therefore, z(1) is a transmission zero of
H. A similar analysis shows that z(2) is also a transmission zero.

Unobservable and Uncontrollable Modes of MIMO Model

Identify the unobservable and uncontrollable modes of a MIMO model using the state-
space matrix syntax of tzero.

Obtain a MIMO model.

load ltiexamples gasf

size(gasf)

1 Functions — Alphabetical List

1-762

State-space model with 4 outputs, 6 inputs, and 25 states.

gasf is a MIMO model that might contain uncontrollable or unobservable states.

Scale the state-space matrices of gasf.

[A,B,C,D] = ssdata(prescale(gasf));

To identify the unobservable and uncontrollable modes of gasf, you need access to
the state-space matrices A, B, C, and D of the model. tzero does not scale state-space
matrices when you use the syntax. Therefore, use prescale with ssdata to extract
scaled values of these matrices.

Use tzero to identify the uncontrollable states of gasf.

 uncon = tzero(A,B,[],[])

uncon =

 -0.0568

 -0.0568

 -0.0568

 -0.0568

 -0.0568

 -0.0568

When you provide A and B matrices to tzero, but no C and D matrices, the command
returns the eigenvalues of the uncontrollable modes of gasf. The output shows that
there are six degenerate uncontrollable modes.

Identify the unobservable states of gasf.

unobs = tzero(A,[],C,[])

unobs =

 Empty matrix: 0-by-1

When you provide A and C matrices, but no B and D matrices, the command returns the
eigenvalues of the unobservable modes. The empty result shows that gasf contains no
unobservable states.

Alternatives
To calculate the zeros and gain of a single-input, single-output (SISO) system, use zero.

 tzero

1-763

More About

Invariant zeros

For a MIMO state-space model

E
dx

dt
Ax Bu

y Cx Du

= +

= + ,

the invariant zeros are the complex values of s for which the rank of the system matrix

A sE B

C D

-È

Î
Í

˘

˚
˙

drops from its normal value. (For explicit state-space models, E = I).

Transmission zeros

For a MIMO state-space model

E
dx

dt
Ax Bu

y Cx Du

= +

= + ,

the transmission zeros are the complex values of s for which the rank of the equivalent
transfer function H(s) = D + C(sE – A)–1B drops from its normal value. (For explicit state-
space models, E = I.)

Transmission zeros are a subset of the invariant zeros. For minimal realizations, the
transmission zeros and invariant zeros are identical.

Tips

• You can use the syntax z = tzero(A,B,C,D,E) to find the uncontrollable or
unobservable modes of a state-space model. When C and D are empty or zero, tzero
returns the uncontrollable modes of (A-sE,B). Similarly, when B and D are empty
or zero, tzero returns the unobservable modes of (C,A-sE). See “Unobservable and
Uncontrollable Modes of MIMO Model” on page 1-761 for an example.

1 Functions — Alphabetical List

1-764

Algorithms

tzero is based on SLICOT routines AB08ND, AG08BD, and AB8NXZ. tzero
implements the algorithms in [1] and [2].

References

[1] Emami-Naeini, A. and P. Van Dooren, "Computation of Zeros of Linear Multivariable
Systems," Automatica, 18 (1982), pp. 415–430.

[2] Misra, P, P. Van Dooren, and A. Varga, “Computation of Structural Invariants of
Generalized State-Space Systems,” Automatica, 30 (1994), pp. 1921-1936.

See Also
pole | pzmap | zero

 updateSystem

1-765

updateSystem
Update dynamic system data in a response plot

Syntax

updateSystem(h,sys)

updateSystem(h,sys,N)

Description

updateSystem(h,sys) replaces the dynamic system used to compute a response plot
with the dynamic system model or model array sys, and updates the plot. If the plot with
handle h contains more than one system response, this syntax replaces the first response
in the plot. updateSystem is useful, for example, to cause a plot in a GUI to update in
response to interactive input. See “Build GUI With Interactive Plot Updates”.

updateSystem(h,sys,N) replaces the data used to compute the Nth response in the
plot.

Examples

Update System Data in Plot

Replace plotted step response data with data computed from a different dynamic system
model.

Suppose you have a plant model and pure integrator controller that you designed for that
plant. Plot the step responses of the plant and the closed-loop system.

w = 2;

zeta = 0.5;

G = tf(w^2,[1,2*zeta*w,w^2]);

C1 = pid(0,0.621);

CL1 = feedback(G*C1,1);

1 Functions — Alphabetical List

1-766

h = stepplot(G,CL1);

h is the plot handle that identifies the plot created by stepplot. In this figure, G is used
to compute the first response, and CL1 is used to compute the second response. This
ordering corresponds to the order of inputs to stepplot.

Suppose you also have a PID controller design that you want to analyze. Create a model
of the closed-loop system using this alternate controller.

C2 = pid(2,2.6,0.4,0.002);

CL2 = feedback(G*C2,1);

Update the step plot to display the second closed-loop system instead of the first. The
closed-loop system is the second response in the plot, so specify the index value 2.

 updateSystem

1-767

updateSystem(h,CL2,2);

The updateSystem command replaces the system used to compute the second response
displayed in the plot. Instead of displaying response data derived from CL1, the plot now
shows data derived from CL2.

• “Build GUI With Interactive Plot Updates”

Input Arguments

h — Plot to update
plot handle

1 Functions — Alphabetical List

1-768

Plot to update with new system data, specified as a plot handle. Typically, you obtain the
plot handle as an output argument of a response plotting command such as stepplot
or bodeplot. For example, the command h = bodeplot(G) returns a handle to a plot
containing the Bode response of a dynamic system, G.

sys — System for new response data
dynamic system model | model array

System from which to compute new response data for the response plot, specified as a
dynamic system model or model array.

sys must match the plotted system that it replaces in both I/O dimensions and array
dimensions. For example, suppose h refers to a plot that displays the step responses of a
5-element vector of 2-input, 2-output systems. In this case, sys must also be a 5-element
vector of 2-input, 2-output systems. The number of states in the elements of sys need not
match the number of states in the plotted systems.

N — Index of system to replace
1 (default) | positive integer

Index of system to replace in the plot, specified as a positive integer. For example,
suppose you create a plot using the following command.

h = impulseplot(G1,G2,G3,G4);

To replace the impulse data of G3 with data from a new system, sys, use the following
command.

updateSystem(h,sys,3);

 upsample

1-769

upsample
Upsample discrete-time models

Syntax

sysl = upsample(sys,L)

Description

sysl = upsample(sys,L) resamples the discrete-time dynamic system model sys at
a sampling rate that is L-times faster than the sampling time of sys (Ts0). L must be a
positive integer. When sys is a TF model, H(z), upsample returns sysl as H(zL) with
the sampling time Ts0 / L.

The responses of models sys and sysl have the following similarities:

• The time responses of sys and sysl match at multiples of Ts0.
• The frequency responses of sys and sysl match up to the Nyquist frequency π / Ts0.

Note: sysl has L times as many states as sys.

Examples

Create a transfer function with a sampling time that is 14 times faster than that of the
following transfer function:

sys = tf(0.75,[1 10 2],2.25)

Transfer function:

 0.75

z^2 + 10 z + 2

Sampling time: 2.25

1 Functions — Alphabetical List

1-770

To create the upsampled transfer function sys1, type the following commands:

L=14;

sys1 = upsample(sys,L)

These commands return the result:

Transfer function:

 0.75

z^28 + 10 z^14 + 2

Sampling time: 0.16071

The sampling time of sys1 is 0.16071 seconds, which is 14 times faster than the 2.25
second sampling time of sys.

See Also
d2c | c2d | d2d

 view (genmat)

1-771

view (genmat)
Visualize gain surface as a function of scheduling variables

Syntax

view(M)

view(M,xvar)

view(M,xvar,yvar)

view(M,xvar,xdata)

view(M,xvar,xdata,yvar,ydata)

Description

view(M) plots the values of a 1-D or 2-D array of generalized matrices on a 1-D or 2-D
plot. Typically, M is a tunable gain surface that you create with gainsurf. The plot uses
the independent variable values specified in M.SamplingGrid if available. Otherwise,
The plot uses the indices along each array dimension for the X and Y values.

view(M,xvar) plots a 1-D plot of values in the generalized matrix array against a
specified independent variable, xvar. For a 2-D array, the plot contains multiple traces
corresponding to the other dimension in the array. xvar must refer to a sampling variable
listed in M.SamplingGrid.

view(M,xvar,yvar) plots the values in the generalized matrix array against the
specified independent variables, placing xvar on the X axis and yvar on the Y axis. xvar
and yvar must refer to sampling variables listed in M.SamplingGrid. Use this syntax:

• To specify the order of independent variables plotted along the X and Y axes.
• To select the independent variable values when M.SamplingGrid lists more than two

independent variables.

view(M,xvar,xdata) plots a 1-D plot of values in the generalized matrix array, using
xvar to name the X axis. This plot also uses the values in xdata as the values along the X
axis. Use this syntax when M.SamplingGrid is empty.

view(M,xvar,xdata,yvar,ydata) plots a 2-D plot of values in the generalized matrix
array, using xvar and yvar to name the X and Y axes, respectively. This plot also uses the

1 Functions — Alphabetical List

1-772

values in xdata and ydata as values along the X and Y axes, respectively. Use this syntax
when M.SamplingGrid is empty.

Examples

View Gain Surface

Display a tunable gain surface that depends on two independent variables.

Create a scalar gain, K, that is a bilinear function of two independent variables, and :

[alpha,beta] = ndgrid(0:1:15,300:50:600);

F1 = alpha;

F2 = beta;

F3 = alpha.*beta;

K = gainsurf('K',1,F1,F2,F3);

K.SamplingGrid = struct('alpha',alpha,'beta',beta);

gainsurf initializes all gain surface coefficients to zero. For this example, manually set
the coefficients to nonzero values.

K.Blocks.K_1.Value = -0.015;

K.Blocks.K_2.Value = 0.02;

K.Blocks.K_3.Value = 0.01;

Typically, you would tune the coefficients as part of a control system. You would then
use setBlockValue to write the tuned coefficients back to K, and view the tuned gain
surface.

Plot the gain surface.

view(K);

 view (genmat)

1-773

view automatically applies the axis labels and scaling stored in the SamplingGrid
property of the gain surface (see the genmat reference page). If the SamplingGrid
property is empty, the independent variable axes are unlabeled and the values are index
values.

By default, view puts alpha on the X-axis. This ordering arises because SamplingGrid
associates alpha with the first dimension of the gain matrix. Reverse the ordering of the
independent variables on the X- and Y-axes.

view(K,'beta','alpha')

1 Functions — Alphabetical List

1-774

View 1-Dimensional Projections of Gain Surface

Plot gain surface values as a function of one independent variable, for a gain surface that
depends on two independent variables.

Create a gain surface that is a bilinear function of two independent variables, and .

[alpha,beta] = ndgrid(0:1:15,300:50:600);

F1 = alpha;

F2 = beta;

F3 = alpha.*beta;

K = gainsurf('K',1,F1,F2,F3);

SG = struct('alpha',alpha,'beta',beta);

K.SamplingGrid = SG;

 view (genmat)

1-775

gainsurf initializes all gain surface coefficients to zero. For this example, manually set
the coefficients to nonzero values.

K.Blocks.K_1.Value = -0.015;

K.Blocks.K_2.Value = 0.02;

K.Blocks.K_3.Value = 0.01;

Typically, you would tune the coefficients as part of a control system. You would then
use setBlockValue to write the tuned coefficients back to K, and view the tuned gain
surface.

Plot the gain as a function of for all values of in the grid of the gain surface.

view(K,'beta')

1 Functions — Alphabetical List

1-776

view scales the X-axis using the beta values stored in the SamplingGrid property of
the gain surface. This plot is useful to visualize the full range of gain variation due to one
independent variable.

View Gain Surface With Specified Independent Variable Names and Values

Plot a gain surface for which you provide variable names and values.

When plotting a gain surface for which you have not specified a SamplingGrid property
value, view cannot label the independent variable axes. In addition, the independent
variable values are just the index values of the gain matrix. (For information about
SamplingGrid, see the genmat reference page). In this case, you can specify variable
names and values for the purpose of the plot.

Create a gain surface that is a bilinear function of two independent variables, and .

[alpha,beta] = ndgrid(0:1:15,300:50:600);

F1 = alpha;

F2 = beta;

F3 = alpha.*beta;

K = gainsurf('K',1,F1,F2,F3);

gainsurf initializes all gain surface coefficients to zero. For this example, manually set
the coefficients to nonzero values.

K.Blocks.K_1.Value = -0.015;

K.Blocks.K_2.Value = 0.02;

K.Blocks.K_3.Value = 0.01;

Typically, you would tune the coefficients as part of a control system. You would then
use setBlockValue to write the tuned coefficients back to K, and view the tuned gain
surface.

View the gain surface, specifying variable names and values.

view(K,'A',0:0.1:1.5,'B',15:2.5:30)

 view (genmat)

1-777

You can use any variable name and values that you like. The name and value only label
the axes and do not affect the gain values themselves, which are stored in K. However,
the vectors you supply for the variable values must match the sampling dimensions
of the gain surface. For example, K is created using an 16-element vector for its first
dimension. Therefore, the vector you provide of values for that dimension must also have
16 elements.

Input Arguments

M — Array of generalized matrices
genmat array

1 Functions — Alphabetical List

1-778

Array of generalized matrices to plot, specified as a genmat array. Typically, M
represents a variable gain surface that you create using the gainsurfcommand.
Optionally, you can set the SamplingGrid property of M to list the independent variable
names and values corresponding to entries in the array. See the genmat reference page
for more information.

xvar — X-axis variable
string

X-axis variable in the plot, specified as a string.

If the SamplingGrid property of M specifies independent variable names and values,
xvar must match one of those variable names. In this case, view uses the values stored
in M.SamplingGrid for the X axis of the plot.

If the SamplingGrid property of M is empty, view uses xvar to label the X axis of
the plot. In this case, you must also specify values for the X axis using the xvar input
argument.

yvar — Y-axis variable
string

Y-axis variable in the plot, specified as a string.

If the SamplingGrid property of M specifies independent variable names and values,
yvar must match one of those variable names. In this case, view uses the values stored
in M.SamplingGrid for the Y axis of the plot.

If the SamplingGrid property of M is empty, view uses yvar to label the Y axis of
the plot. In this case, you must also specify values for the Y axis using the yvar input
argument.

xdata — X-axis values
numeric vector

X-axis values in the plots, specified as a numeric vector. If the SamplingGrid property
of M is empty, use xdata to specify values for view to display along the X axis of the plot.
The length of xdata must match the first array dimension of M.

ydata — Y-axis values
numeric vector

 view (genmat)

1-779

Y-axis values in the plots, specified as a numeric vector. If the SamplingGrid property
of M is empty, use ydata to specify values for view to display along the Y axis of the plot.
The length of ydata must match the first array dimension of M.

See Also

Functions
gainsurf | genmat | getValue | setBlockValue

1 Functions — Alphabetical List

1-780

xperm
Reorder states in state-space models

Syntax

sys = xperm(sys,P)

Description

sys = xperm(sys,P) reorders the states of the state-space model sys according to the
permutation P. The vector P is a permutation of 1:NX, where NX is the number of states
in sys. For information about creating state-space models, see ss and dss.

Examples

Order the states in the ssF8 model in alphabetical order.

1 Load the ssF8 model by typing the following commands:

load ltiexamples

ssF8

These commands return:
a =

 PitchRate Velocity AOA PitchAngle

 PitchRate -0.7 -0.0458 -12.2 0

 Velocity 0 -0.014 -0.2904 -0.562

 AOA 1 -0.0057 -1.4 0

 PitchAngle 1 0 0 0

b =

 Elevator Flaperon

 PitchRate -19.1 -3.1

 Velocity -0.0119 -0.0096

 AOA -0.14 -0.72

 PitchAngle 0 0

c =

 PitchRate Velocity AOA PitchAngle

 xperm

1-781

 FlightPath 0 0 -1 1

 Acceleration 0 0 0.733 0

d =

 Elevator Flaperon

 FlightPath 0 0

 Acceleration 0.0768 0.1134

Continuous-time model.

2 Order the states in alphabetical order by typing the following commands:

[y,P]=sort(ssF8.StateName);

sys=xperm(ssF8,P)

These commands return:
a =

 AOA PitchAngle PitchRate Velocity

 AOA -1.4 0 1 -0.0057

 PitchAngle 0 0 1 0

 PitchRate -12.2 0 -0.7 -0.0458

 Velocity -0.2904 -0.562 0 -0.014

b =

 Elevator Flaperon

 AOA -0.14 -0.72

 PitchAngle 0 0

 PitchRate -19.1 -3.1

 Velocity -0.0119 -0.0096

c =

 AOA PitchAngle PitchRate Velocity

 FlightPath -1 1 0 0

 Acceleration 0.733 0 0 0

d =

 Elevator Flaperon

 FlightPath 0 0

 Acceleration 0.0768 0.1134

Continuous-time model.

The states in ssF8 now appear in alphabetical order.

See Also
ss | dss

1 Functions — Alphabetical List

1-782

zero
Zeros and gain of SISO dynamic system

Syntax

z = zero(sys)

[z,gain] = zero(sys)

[z,gain] = zero(sysarr,J1,...,JN)

Description

z = zero(sys) returns the zeros of the single-input, single-output (SISO) dynamic
system model, sys.

[z,gain] = zero(sys) also returns the overall gain of sys.

[z,gain] = zero(sysarr,J1,...,JN) returns the zeros and gain of the model with
subscripts J1,...,JN in the model array sysarr.

Input Arguments

sys

SISO “dynamic system model”.

If sys has internal delays, zero sets all internal delays to zero, creating a zero-order
Padé approximation. This approximation ensures that the system has a finite number of
zeros. zero returns an error if setting internal delays to zero creates singular algebraic
loops.

sysarr

Array of dynamic system models.

J1,...,JN

Indices identifying the model sysarr(J1,...,JN) in the array sysarr.

 zero

1-783

Output Arguments

z

Column vector containing the locations of zeros in sys. The zero locations are expressed
in the reciprocal of the time units of sys. For example, the zeros are in units of 1/minutes
if the TimeUnit property of sys is minutes.

gain

Gain of sys (in the zero-pole-gain sense).

Examples

Zero Locations and Gain of Transfer Function

Calculate the zero locations and overall gain of the transfer function

H s
s s

s s
() =

+ -

+ +

4 2 0 25 0 004

9 6 17

2

2

. . .

.

.

H = tf([4.2,0.25,-0.004],[1,9.6,17]);

[z,gain] = zero(H)

z =

 -0.0726

 0.0131

gain =

 4.2000

The zero locations are expressed in radians per second, because the time unit of the
transfer function (H.TimeUnit) is seconds. Change the model time units, and zero
returns pole locations relative to the new unit.

H = chgTimeUnit(H,'minutes');

[z,gain] = zero(H)

z =

1 Functions — Alphabetical List

1-784

 -4.3581

 0.7867

gain =

 4.2000

Alternatives

To calculate the transmission zeros of a multi-input, multi-output system, use tzero.

See Also
pzmap | pole | tzero

 zgrid

1-785

zgrid
Generate z-plane grid of constant damping factors and natural frequencies

Syntax

zgrid

zgrid(z,wn)

zgrid([],[])

Description

zgrid generates, for root locus and pole-zero maps, a grid of constant damping factors
from zero to one in steps of 0.1 and natural frequencies from zero to π in steps of π/10,
and plots the grid over the current axis. If the current axis contains a discrete z-plane
root locus diagram or pole-zero map, zgrid draws the grid over the plot without altering
the current axis limits.

zgrid(z,wn) plots a grid of constant damping factor and natural frequency lines
for the damping factors and normalized natural frequencies in the vectors z and wn,
respectively. If the current axis contains a discrete z-plane root locus diagram or
pole-zero map, zgrid(z,wn) draws the grid over the plot. The frequency lines for
unnormalized (true) frequencies can be plotted using

zgrid(z,wn/Ts)

where Ts is the sample time.

zgrid([],[]) draws the unit circle.

Alternatively, you can select Grid from the right-click menu to generate the same z-
plane grid.

Examples

Plot z-plane grid lines on the root locus for the system

1 Functions — Alphabetical List

1-786

H z
z z

z z

()
. .

. .
= − +

− +
2 3 4 1 5

1 6 0 8

2

2

by typing

H = tf([2 -3.4 1.5],[1 -1.6 0.8],-1)

Transfer function:

2 z^2 - 3.4 z + 1.5

 z^2 - 1.6 z + 0.8

Sampling time: unspecified

To see the z-plane grid on the root locus plot, type

rlocus(H)

zgrid

axis('square')

 zgrid

1-787

See Also
sgrid | pzmap | rlocus

1 Functions — Alphabetical List

1-788

zpk
Create zero-pole-gain model; convert to zero-pole-gain model

Syntax

sys = zpk(z,p,k)

sys = zpk(z,p,k,Ts)

sys = zpk(M)

sys = zpk(z,p,k,ltisys)

s = zpk('s')

z = zpk('z',Ts)

zsys = zpk(sys)

zsys = zpk(sys, 'measured')

zsys = zpk(sys, 'noise')

zsys = zpk(sys, 'augmented')

Description

Used zpk to create zero-pole-gain models (zpk model objects), or to convert dynamic
systems to zero-pole-gain form.

Creation of Zero-Pole-Gain Models

sys = zpk(z,p,k) creates a continuous-time zero-pole-gain model with zeros z, poles
p, and gain(s) k. The output sys is a zpk model object storing the model data.

In the SISO case, z and p are the vectors of real- or complex-valued zeros and poles, and
k is the real- or complex-valued scalar gain:

h s k
s z s z s z m

s p s p s p n
() =

- ()() - ()() - ()()
- ()() - ()() - ()()

1 2

1 2

…

…

Set z or p to [] for systems without zeros or poles. These two vectors need not have equal
length and the model need not be proper (that is, have an excess of poles).

 zpk

1-789

To create a MIMO zero-pole-gain model, specify the zeros, poles, and gain of each SISO
entry of this model. In this case:

• z and p are cell arrays of vectors with as many rows as outputs and as many columns
as inputs, and k is a matrix with as many rows as outputs and as many columns as
inputs.

• The vectors z{i,j} and p{i,j} specify the zeros and poles of the transfer function
from input j to output i.

• k(i,j) specifies the (scalar) gain of the transfer function from input j to output i.

See below for a MIMO example.

sys = zpk(z,p,k,Ts) creates a discrete-time zero-pole-gain model with sample time
Ts (in seconds). Set Ts = -1 or Ts = [] to leave the sample time unspecified. The input
arguments z, p, k are as in the continuous-time case.

sys = zpk(M) specifies a static gain M.

sys = zpk(z,p,k,ltisys) creates a zero-pole-gain model with properties inherited
from the LTI model ltisys (including the sample time).

To create an array of zpk model objects, use a for loop, or use multidimensional cell
arrays for z and p, and a multidimensional array for k.

Any of the previous syntaxes can be followed by property name/property value pairs.

'PropertyName',PropertyValue

Each pair specifies a particular property of the model, for example, the input names or
the input delay time. For more information about the properties of zpk model objects, see
“Properties” on page 1-791. Note that

sys = zpk(z,p,k,'Property1',Value1,...,'PropertyN',ValueN)

is a shortcut for the following sequence of commands.

sys = zpk(z,p,k)

set(sys,'Property1',Value1,...,'PropertyN',ValueN)

Zero-Pole-Gain Models as Rational Expressions in s or z

You can also use rational expressions to create a ZPK model. To do so, first type either:

1 Functions — Alphabetical List

1-790

• s = zpk('s') to specify a ZPK model using a rational function in the Laplace
variable, s.

• z = zpk('z',Ts) to specify a ZPK model with sample time Ts using a rational
function in the discrete-time variable, z.

Once you specify either of these variables, you can specify ZPK models directly as
rational expressions in the variable s or z by entering your transfer function as a
rational expression in either s or z.

Conversion to Zero-Pole-Gain Form

zsys = zpk(sys) converts an arbitrary LTI model sys to zero-pole-gain form. The
output zsys is a ZPK object. By default, zpk uses zero to compute the zeros when
converting from state-space to zero-pole-gain. Alternatively,

zsys = zpk(sys,'inv')

uses inversion formulas for state-space models to compute the zeros. This algorithm is
faster but less accurate for high-order models with low gain at s = 0.

Conversion of Identified Models

An identified model is represented by an input-output equation of the form y(t) =
Gu(t) + He(t), where u(t) is the set of measured input channels and e(t) represents
the noise channels. If Λ= LL' represents the covariance of noise e(t), this equation can
also be written as y(t) = Gu(t) + HLv(t), where cov(v(t)) = I.

zsys = zpk(sys), or zsys = zpk(sys, 'measured') converts the measured
component of an identified linear model into the ZPK form. sys is a model of type idss,
idproc, idtf, idpoly, or idgrey. zsys represents the relationship between u and y.

zsys = zpk(sys, 'noise') converts the noise component of an identified linear
model into the ZPK form. It represents the relationship between the noise input, v(t)
and output, y_noise = HL v(t). The noise input channels belong to the InputGroup
'Noise'. The names of the noise input channels are v@yname, where yname is the name
of the corresponding output channel. zsys has as many inputs as outputs.

zsys = zpk(sys, 'augmented') converts both the measured and noise dynamics
into a ZPK model. zsys has ny+nu inputs such that the first nu inputs represent
the channels u(t) while the remaining by channels represent the noise channels

 zpk

1-791

v(t). zsys.InputGroup contains 2 input groups, 'measured' and 'noise'.
zsys.InputGroup.Measured is set to 1:nu while zsys.InputGroup.Noise is set to
nu+1:nu+ny. zsys represents the equation y(t) = [G HL] [u; v].

Tip An identified nonlinear model cannot be converted into a ZPK system. Use linear
approximation functions such as linearize and linapp.

Variable Selection

As for transfer functions, you can specify which variable to use in the display of zero-
pole-gain models. Available choices include s (default) and p for continuous-time models,
and z (default), z-1, q-1 (equivalent to z-1), or q (equivalent to z) for discrete-time models.
Reassign the 'Variable' property to override the defaults. Changing the variable
affects only the display of zero-pole-gain models.

Properties

zpk objects have the following properties:

z

System zeros.

The z property stores the transfer function zeros (the numerator roots). For SISO models,
z is a vector containing the zeros. For MIMO models with Ny outputs and Nu inputs, z is
a Ny-by-Nu cell array of vectors of the zeros for each input/output pair.

p

System poles.

The p property stores the transfer function poles (the denominator roots). For SISO
models, p is a vector containing the poles. For MIMO models with Ny outputs and Nu
inputs, p is a Ny-by-Nu cell array of vectors of the poles for each input/output pair.

k

System gains.

1 Functions — Alphabetical List

1-792

The k property stores the transfer function gains. For SISO models, k is a scalar value.
For MIMO models with Ny outputs and Nu inputs, k is a Ny-by-Nu matrix storing the
gains for each input/output pair.

DisplayFormat

String specifying the way the numerator and denominator polynomials are factorized for
display purposes.

The numerator and denominator polynomials are each displayed as a product of
first- and second-order factors. DisplayFormat controls the display of those factors.
DisplayFormat can take the following values:

• 'roots' (default) — Display factors in terms of the location of the polynomial roots.
• 'frequency' — Display factors in terms of root natural frequencies ω0 and damping

ratios ζ.

The 'frequency' display format is not available for discrete-time models with
Variable value 'z^-1' or 'q^-1'.

• 'time constant' — Display factors in terms of root time constants τ and damping
ratios ζ.

The 'time constant' display format is not available for discrete-time models with
Variable value 'z^-1' or 'q^-1'.

For continuous-time models, the following table shows how the polynomial factors are
written in each display format.

DisplayName Value First-Order Factor (Real Root R) Second-Order Factor (Complex
Root pair R = a±jb)

'roots' (s – R) (s2 – αs + β), where α = 2a,
β = a2 + b2

'frequency' (1 – s/ω0), where ω0 = R 1 – 2ζ(s/ω0) + (s/ω0)2, where
ω0

2 = a2 + b2, ζ = a/ω0

'time constant' (1 – τs), where τ = 1/R 1 – 2ζ(τs) + (τs)2, where τ = 1/ω0,
ζ = aτ

For discrete-time models, the polynomial factors are written as in continuous time, with
the following variable substitutions:

 zpk

1-793

s w
z

T
R

R

T
s s

Æ =

-

Æ

-1 1
; ,

where Ts is the sampling time. In discrete time, τ and ω0 closely match the time constant
and natural frequency of the equivalent continuous-time root, provided |z–1| ≪ Ts
(ω0 ≪ π/Ts = Nyquist frequency).

Default: 'roots'

Variable

String specifying the transfer function display variable. Variable can take the following
values:

• 's' — Default for continuous-time models
• 'z' — Default for discrete-time models
• 'p' — Equivalent to 's'
• 'q' — Equivalent to 'z'
• 'z^-1' — Inverse of 'z'
• 'q^-1' — Equivalent to 'z^-1'

The value of Variable only affects the display of zpk models.

Default: 's'

ioDelay

Transport delays. ioDelay is a numeric array specifying a separate transport delay for
each input/output pair.

For continuous-time systems, specify transport delays in the time unit stored in the
TimeUnit property. For discrete-time systems, specify transport delays in integer
multiples of the sampling period, Ts.

For a MIMO system with Ny outputs and Nu inputs, set ioDelay to a Ny-by-Nu array.
Each entry of this array is a numerical value that represents the transport delay for the
corresponding input/output pair. You can also set ioDelay to a scalar value to apply the
same delay to all input/output pairs.

Default: 0 for all input/output pairs

1 Functions — Alphabetical List

1-794

InputDelay

Input delay for each input channel, specified as a scalar value or numeric vector. For
continuous-time systems, specify input delays in the time unit stored in the TimeUnit
property. For discrete-time systems, specify input delays in integer multiples of the
sampling period Ts. For example, InputDelay = 3 means a delay of three sampling
periods.

For a system with Nu inputs, set InputDelay to an Nu-by-1 vector. Each entry of this
vector is a numerical value that represents the input delay for the corresponding input
channel.

You can also set InputDelay to a scalar value to apply the same delay to all channels.

Default: 0

OutputDelay

Output delays. OutputDelay is a numeric vector specifying a time delay for each output
channel. For continuous-time systems, specify output delays in the time unit stored
in the TimeUnit property. For discrete-time systems, specify output delays in integer
multiples of the sampling period Ts. For example, OutputDelay = 3 means a delay of
three sampling periods.

For a system with Ny outputs, set OutputDelay to an Ny-by-1 vector, where each entry
is a numerical value representing the output delay for the corresponding output channel.
You can also set OutputDelay to a scalar value to apply the same delay to all channels.

Default: 0 for all output channels

Ts

Sampling time. For continuous-time models, Ts = 0. For discrete-time models, Ts is
a positive scalar representing the sampling period. This value is expressed in the unit
specified by the TimeUnit property of the model. To denote a discrete-time model with
unspecified sampling time, set Ts = -1.

Changing this property does not discretize or resample the model. Use c2d and d2c to
convert between continuous- and discrete-time representations. Use d2d to change the
sampling time of a discrete-time system.

Default: 0 (continuous time)

 zpk

1-795

TimeUnit

String representing the unit of the time variable. This property specifies the units for the
time variable, the sampling time Ts, and any time delays in the model. Use any of the
following values:

• 'nanoseconds'

• 'microseconds'

• 'milliseconds'

• 'seconds'

• 'minutes'

• 'hours'

• 'days'

• 'weeks'

• 'months'

• 'years'

Changing this property has no effect on other properties, and therefore changes the
overall system behavior. Use chgTimeUnit to convert between time units without
modifying system behavior.

Default: 'seconds'

InputName

Input channel names. Set InputName to a string for single-input model. For a multi-
input model, set InputName to a cell array of strings.

Alternatively, use automatic vector expansion to assign input names for multi-input
models. For example, if sys is a two-input model, enter:

sys.InputName = 'controls';

The input names automatically expand to {'controls(1)';'controls(2)'}.

You can use the shorthand notation u to refer to the InputName property. For example,
sys.u is equivalent to sys.InputName.

Input channel names have several uses, including:

1 Functions — Alphabetical List

1-796

• Identifying channels on model display and plots
• Extracting subsystems of MIMO systems
• Specifying connection points when interconnecting models

Default: Empty string '' for all input channels

InputUnit

Input channel units. Use InputUnit to keep track of input signal units. For a single-
input model, set InputUnit to a string. For a multi-input model, set InputUnit to a cell
array of strings. InputUnit has no effect on system behavior.

Default: Empty string '' for all input channels

InputGroup

Input channel groups. The InputGroup property lets you assign the input channels of
MIMO systems into groups and refer to each group by name. Specify input groups as a
structure. In this structure, field names are the group names, and field values are the
input channels belonging to each group. For example:

sys.InputGroup.controls = [1 2];

sys.InputGroup.noise = [3 5];

creates input groups named controls and noise that include input channels 1, 2 and
3, 5, respectively. You can then extract the subsystem from the controls inputs to all
outputs using:

sys(:,'controls')

Default: Struct with no fields

OutputName

Output channel names. Set OutputName to a string for single-output model. For a multi-
output model, set OutputName to a cell array of strings.

Alternatively, use automatic vector expansion to assign output names for multi-output
models. For example, if sys is a two-output model, enter:

sys.OutputName = 'measurements';

The output names to automatically expand to
{'measurements(1)';'measurements(2)'}.

 zpk

1-797

You can use the shorthand notation y to refer to the OutputName property. For example,
sys.y is equivalent to sys.OutputName.

Output channel names have several uses, including:

• Identifying channels on model display and plots
• Extracting subsystems of MIMO systems
• Specifying connection points when interconnecting models

Default: Empty string '' for all input channels

OutputUnit

Output channel units. Use OutputUnit to keep track of output signal units. For
a single-output model, set OutputUnit to a string. For a multi-output model, set
OutputUnit to a cell array of strings. OutputUnit has no effect on system behavior.

Default: Empty string '' for all input channels

OutputGroup

Output channel groups. The OutputGroup property lets you assign the output channels
of MIMO systems into groups and refer to each group by name. Specify output groups as
a structure. In this structure, field names are the group names, and field values are the
output channels belonging to each group. For example:

sys.OutputGroup.temperature = [1];

sys.InputGroup.measurement = [3 5];

creates output groups named temperature and measurement that include output
channels 1, and 3, 5, respectively. You can then extract the subsystem from all inputs to
the measurement outputs using:

sys('measurement',:)

Default: Struct with no fields

Name

System name. Set Name to a string to label the system.

Default: ''

1 Functions — Alphabetical List

1-798

Notes

Any text that you want to associate with the system. Set Notes to a string or a cell array
of strings.

Default: {}

UserData

Any type of data you wish to associate with system. Set UserData to any MATLAB data
type.

Default: []

SamplingGrid

Sampling grid for model arrays, specified as a data structure.

For model arrays that are derived by sampling one or more independent variables,
this property tracks the variable values associated with each model in the array. This
information appears when you display or plot the model array. Use this information to
trace results back to the independent variables.

Set the field names of the data structure to the names of the sampling variables. Set
the field values to the sampled variable values associated with each model in the array.
All sampling variables should be numeric and scalar valued, and all arrays of sampled
values should match the dimensions of the model array.

For example, suppose you create a 11-by-1 array of linear models, sysarr, by taking
snapshots of a linear time-varying system at times t = 0:10. The following code stores
the time samples with the linear models.

 sysarr.SamplingGrid = struct('time',0:10)

Similarly, suppose you create a 6-by-9 model array, M, by independently sampling two
variables, zeta and w. The following code attaches the (zeta,w) values to M.

[zeta,w] = ndgrid(<6 values of zeta>,<9 values of w>)

M.SamplingGrid = struct('zeta',zeta,'w',w)

When you display M, each entry in the array includes the corresponding zeta and w
values.

M

 zpk

1-799

M(:,:,1,1) [zeta=0.3, w=5] =

 25

 s^2 + 3 s + 25

M(:,:,2,1) [zeta=0.35, w=5] =

 25

 s^2 + 3.5 s + 25

...

Default: []

Examples

Example 1

Create the continuous-time SISO transfer function:

h s
s

s j s j s
() =

-

- +() - -() -()

2

1 1 2

Create h(s) as a zpk object using:

h = zpk(0, [1-i 1+i 2], -2);

Example 2

Specify the following one-input, two-output zero-pole-gain model:

H z
z

z

z j z j

() =
-
+()

- +() - -()

È

Î

Í
Í
Í
Í

˘

˚

˙
˙
˙
˙

1

0 3

2 0 5

0 1 0 1

.

.

. .

.

1 Functions — Alphabetical List

1-800

To do this, enter:

z = {[] ; -0.5};

p = {0.3 ; [0.1+i 0.1-i]};

k = [1 ; 2];

H = zpk(z,p,k,-1); % unspecified sample time

Example 3

Convert the transfer function

h = tf([-10 20 0],[1 7 20 28 19 5]);

to zero-pole-gain form, using:

zpk(h)

This command returns the result:

Zero/pole/gain:

 -10 s (s-2)

(s+1)^3 (s^2 + 4s + 5)

Example 4

Create a discrete-time ZPK model from a rational expression in the variable z.

z = zpk('z',0.1);

H = (z+.1)*(z+.2)/(z^2+.6*z+.09)

This command returns the following result:

Zero/pole/gain:

(z+0.1) (z+0.2)

 (z+0.3)^2

Sampling time: 0.1

Example 5

Create a MIMO zpk model using cell arrays of zeros and poles.

 zpk

1-801

Create the two-input, two-output zero-pole-gain model

H s

s

s

s

s s

s s s

() =

- +()
+()

- +()
-() -() -()

È

Î

Í
Í
Í
Í
Í
Í

˘

˚

˙
˙

1 3 5

1

2 2 2

1 2 3
0

2

2
˙̇
˙
˙
˙

by entering:

Z = {[],-5;[1-i 1+i] []};

P = {0,[-1 -1];[1 2 3],[]};

K = [-1 3;2 0];

H = zpk(Z,P,K);

Use [] as a place holder in Z or P when the corresponding entry of H(s) has no zeros or
poles.

Example 6

Extract the measured and noise components of an identified polynomial model into two
separate ZPK models. The former (measured component) can serve as a plant model
while the latter can serve as a disturbance model for control system design.

load icEngine

z = iddata(y,u,0.04);

nb = 2; nf = 2; nc = 1; nd = 3; nk = 3;

sys = bj(z, [nb nc nd nf nk]);

sys is a model of the form, y(t) = B/F u(t) + C/D e(t), where B/F represents the
measured component and C/D the noise component.

sysMeas = zpk(sys, 'measured')

Alternatively, use can simply use zpk(sys) to extract the measured component.

sysNoise = zpk(sys, 'noise')

1 Functions — Alphabetical List

1-802

More About

Algorithms

zpk uses the MATLAB function roots to convert transfer functions and the functions
zero and pole to convert state-space models.

See Also
frd | get | set | ss | tf | zpkdata

 zpkdata

1-803

zpkdata
Access zero-pole-gain data

Syntax

[z,p,k] = zpkdata(sys)

[z,p,k,Ts] = zpkdata(sys)

[z,p,k,Ts,covz,covp,covk] = zpkdata(sys)

Description

[z,p,k] = zpkdata(sys) returns the zeros z, poles p, and gain(s) k of the zero-pole-
gain model sys. The outputs z and p are cell arrays with the following characteristics:

• z and p have as many rows as outputs and as many columns as inputs.
• The (i,j) entries z{i,j} and p{i,j} are the (column) vectors of zeros and poles of

the transfer function from input j to output i.

The output k is a matrix with as many rows as outputs and as many columns as inputs
such that k(i,j) is the gain of the transfer function from input j to output i. If sys is
a transfer function or state-space model, it is first converted to zero-pole-gain form using
zpk.

For SISO zero-pole-gain models, the syntax

[z,p,k] = zpkdata(sys,'v')

forces zpkdata to return the zeros and poles directly as column vectors rather than as
cell arrays (see example below).

[z,p,k,Ts] = zpkdata(sys) also returns the sample time Ts.

[z,p,k,Ts,covz,covp,covk] = zpkdata(sys) also returns the covariances
of the zeros, poles and gain of the identified model sys. covz is a cell array such
that covz{ky,ku} contains the covariance information about the zeros in the vector
z{ky,ku}. covz{ky,ku} is a 3-D array of dimension 2-by-2-by-Nz, where Nz is the

1 Functions — Alphabetical List

1-804

length of z{ky,ku}, so that the (1,1) element is the variance of the real part, the
(2,2) element is the variance of the imaginary part, and the (1,2) and (2,1) elements
contain the covariance between the real and imaginary parts. covp has a similar
relationship to p.covk is a matrix containing the variances of the elements of k.

You can access the remaining LTI properties of sys with get or by direct referencing, for
example,

sys.Ts

sys.inputname

Examples

Example 1

Given a zero-pole-gain model with two outputs and one input

H = zpk({[0];[-0.5]},{[0.3];[0.1+i 0.1-i]},[1;2],-1)

Zero/pole/gain from input to output...

 z

 #1: -------

 (z-0.3)

 2 (z+0.5)

 #2: -------------------

 (z^2 - 0.2z + 1.01)

Sampling time: unspecified

you can extract the zero/pole/gain data embedded in H with

[z,p,k] = zpkdata(H)

z =

 [0]

 [-0.5000]

p =

 [0.3000]

 [2x1 double]

k =

 1

 2

 zpkdata

1-805

To access the zeros and poles of the second output channel of H, get the content of the
second cell in z and p by typing

z{2,1}

ans =

 -0.5000

p{2,1}

ans =

 0.1000+ 1.0000i

 0.1000- 1.0000i

Example 2

Extract the ZPK matrices and their standard deviations for a 2-input, 1 output identified
transfer function.

load iddata7

transfer function model

sys1 = tfest(z7, 2, 1, 'InputDelay',[1 0]);

an equivalent process model

sys2 = procest(z7, {'P2UZ', 'P2UZ'}, 'InputDelay',[1 0]);

1, p1, k1, ~, dz1, dp1, dk1] = zpkdata(sys1);

[z2, p2, k2, ~, dz2, dp2, dk2] = zpkdata(sys2);

Use iopzplot to visualize the pole-zero locations and their covariances

h = iopzplot(sys1, sys2);

showConfidence(h)

See Also
ssdata | tfdata | get | zpk

1-806

2

Block Reference

2 Block Reference

2-2

Kalman Filter
Estimate states of discrete-time or continuous-time linear system

Description

Use the Kalman Filter block to estimate states of a state-space plant model given process
and measurement noise covariance data. The state-space model can be time-varying.
A steady-state Kalman filter implementation is used if the state-space model and the
noise covariance matrices are all time-invariant. A time-varying Kalman filter is used
otherwise.

Kalman filter provides the optimal solution to the following continuous or discrete
estimation problems:

Continuous-Time Estimation

Given the continuous plant

&x t A t x t B t u t G t w t

y t C t

() () () () () () ()

() (

= + +

=

 (state equation)

)) () () () () () ()x t D t u t H t w t v t+ + + (measurement equation)

with known inputs u, white process noise w, and white measurement noise v satisfying:

E w t E v t

E w t w t Q t

E w t v t N t

E v t v

T

T

() ()

[() ()] ()

[() ()] ()

[()

[] = [] =

=

=

0

(()] ()t R tT
=

 Kalman Filter

2-3

construct a state estimate x̂ that minimizes the state estimation error covariance

P t E x x x x
T

() [(�)(�)]= - - .

The optimal solution is the Kalman filter with equations

L t P t C t N

P t A t P t P t A t Q t L t R t L

T

T

() (() ()),

() () () () () () () ()

= +

= + + -
& TT t

x t A t x t B t u t L t y t C t x t D t u

()

� () () � () () () ()(() () � () () (

,

&
= + + - - tt)),

where

Q t G t Q t G t

R t R t H t N t N t H t H t Q t H

T

T T

() () () (),

() () () () () () () ()

=

= + + +
TT

T

t

N t G t Q t H t N t

(),

() ()(() () ()).= +

The Kalman filter uses the known inputs u and the measurements y to generate the state
estimates x̂ . If you want, the block can also output the estimates of the true plant output
ŷ .

Plant

v

u

u

w

y

Kalman
Filter

y

x

Kalman Estimator

The block implements the steady-state Kalman filter when the system matrices (A(t),
B(t), C(t), D(t), G(t), H(t)) and noise covariance matrices (Q(t), R(t), N(t)) are
constant (specified in the Block Parameters dialog box). The steady-state Kalman filter

2 Block Reference

2-4

uses a constant matrix P that minimizes the steady-state estimation error covariance and
solves the associated continuous-time algebraic Riccati equation:

 P E x x x x
t

T
= - -

Æ•

lim [(�)(�)].

Discrete-Time Estimation

Given the discrete plant

x n A n x n B n u n G n w n

y n C n x n

+[] = [] [] + [] [] + [] []

[] = [] [

1

,

]] + [] [] + [] [] + [] D n u n H n w n v n ,

with known inputs u, white process noise w and white measurement noise v satisfying

E w n E v n

E w n w n Q n

E v n v n R n

E w

T

T

[[]] [[]] ,

[[] []] [],

[[] []] [],

[[

= =

=

=

0

nn v n N nT] []] [].=

The estimator has the following state equation

ˆ[|] []ˆ[|] [] [] []([] [] ˆ[|]x n n A n x n n B n u n L n y n C n x n n D+ = - + + - - -1 1 1 [[] []),n u n

where the gain L[n] is calculated through the discrete Riccati equation:

L n A n P n C n N n C n P n C n R n

M n P n C

T T[] ([] [] [] [])([] [] [] []) ,

[] []

= +

=

+
-1

TT Tn C n P n C n R n

Z n I M n C n P n I M n C

[]([] [] [] []) ,

[] ([] []) []([] [

+

= - -

-1

nn M n R n M n

P n A n N n R n C n Z A n N n

T T]) [] [] []

[] ([] [] [] []) ([] [

,+

+ = - -
-1 1]] [] []) [] [] [] [],R n C n Q n N n R n N nT T- -

+ -
1 1

 Kalman Filter

2-5

where I is the identity matrix of appropriate size and

Q G Q G

R R H N N H H Q H

T

T T

[n] [n] [n] [n],

[n] [n] [n] [n] [n] [n] [n] [n]

=

= + + +
TT

TN G Q H N

P E x x n n x

[n],

[n] [n] [n] [n] [n]

[n]

and

= +

= - - -

(),

[(�[|])(1 ˆ̂[|])],

[(ˆ[|])(ˆ[|])],

x n n

Z E x x n n x x n n

T

T

-

= - -

1

[n]

The steady-state Kalman filter uses a constant matrix P that minimizes the steady-state
estimation error covariance and solves the associated discrete-time algebraic Riccati
equation.

There are two variants of discrete-time Kalman filters:

• The current estimator generates the state estimates ˆ[|]x n n using all measurement
available, including y[n]. The filter updates ˆ[|]x n n -1 with y[n] and outputs:

ˆ[|] ˆ[|] []([] []ˆ[|] [] []),

ˆ[|

x n n x n n M n y n C n x n n D n u n

y n n

= - + - - -1 1

]] []ˆ[|] [] [].= +C n x n n D n u n

• The delayed estimator generates the state estimates ˆ[|]x n n -1 using measurements
up to y[n –1]. The filter outputs ˆ[|]x n n -1 as defined previously, along with the
optional output ˆ[|]y n n -1

ˆ[|] [] ˆ[|] [] []y n n C n x n n D n u n- = - +1 1

The current estimator has better estimation accuracy compared to the delayed estimator,
which is important for slow sample times. However, it has higher computational
cost, making it harder to implement inside control loops. More specifically, it has
direct feedthrough. This leads to an algebraic loop if the Kalman filter is used in a
feedback loop that does not contain any delays (the feedback loop itself also has direct
feedthrough). The algebraic loop can impact the speed of simulation. You cannot generate
code if your model contains algebraic loops.

2 Block Reference

2-6

The Kalman Filter block differs from the kalman command in the following ways:

• When calling kalman(sys,...), sys includes the G and H matrices. Specifically,
sys.B has [B G] and sys.D has [D H]. When you provide a LTI variable to the
Kalman Filter block, it does not assume that the LTI variable provided contains G and
H. They are optional and separate.

• The kalman command outputs [yhat;xhat] by default. The block only outputs xhat
by default.

Dialog Box and Parameters

The following table summarizes the Kalman Filter block parameters, accessible via the
Block Parameter dialog box.

Task Parameters

Specify filter settings • Time domain
• Use the current measurement y[n]

to improve xhat[n]
Specify the system model Model source in Model Parameters tab
Specify initial state estimates Source in Model Parameters tab
Specify noise characteristics In Model Parameters tab:

• Use G and H matrices (default G=I
and H=0)

• Q, Time-invariant Q
• R, Time-invariant R
• N, Time-invariant N

Specify additional inports In Options tab:

• Add input port u
• Add input port Enable to control

measurement updates
• External reset

Specify additional outports In Options tab:

 Kalman Filter

2-7

Task Parameters

• Output estimated model output y
• Output state estimation error

covariance Z

Time domain

Specify whether to estimate continuous-time or discrete-time states:

• Discrete-Time (Default) — Block estimates discrete-time states
• Continuous-Time — Block estimates continuous-time states

Use the current measurement y[n] to improve xhat[n]

Use the current estimator variant of the discrete-time Kalman filter. When not selected,
the delayed estimator (variant) is used.

This option is available only when Time Domain is Discrete-Time.

Model source

Specify how the A, B, C, D matrices are provided to the block. Must be one of the
following:

• Dialog: LTI State-Space Variable — Use the values specified in the LTI state-
space variable. You must also specify the variable name in Variable. The sample
time of the model must match the setting in the Time domain option, i.e. the model
must be discrete-time if the Time domain is discrete-time.

• Dialog: Individual A, B, C, D matrices — Specify values in the following
block parameters:

• A — Specify the A matrix. It must be real and square.
• B — Specify the B matrix. It must be real and have as many rows as the A matrix.

This option is available only when Add input port u is selected in the Options
tab.

• C — Specify the C matrix. It must be real and have as many columns as the A
matrix.

2 Block Reference

2-8

• D — Specify the D matrix. It must be real. It must have as many rows as the C
matrix and as many columns as the B matrix. This option is available only when
Add input port u is selected in the Options tab.

• External — Specify the A, B, C, D matrices as input signals to the Kalman Filter
block. If you select this option, the block includes additional input ports A, B, C and D.
You must also specify the following in the block parameters:

• Number of states — Number of states to be estimated, specified as a positive
integer. The default value is 2.

• Number of inputs — Number of known inputs in the model, specified as a
positive integer. The default value is 2. This option is only available when Add
input port u is selected.

• Number of outputs — Number of measured outputs in the model, specified as a
positive integer. The default value is 2.

Sample Time

Block sample time, specified as -1 or a positive scalar.

This option is available only when Time Domain is Discrete Time and Model
Source is Dialog: Individual A, B, C, D matrices or External. The sample
time is obtained from the LTI state-space variable if the Model Source is Dialog: LTI
State-Space Variable.

The default value is -1, which implies that the block inherits its sample time based on the
context of the block within the model. All block input ports must have the same sample
time.

Source

Specify how to enter the initial state estimates and initial state estimation error
covariance:

• Dialog — Specify the values directly in the dialog box. You must also specify the
following parameters:

• Initial states x[0] — Specify the initial state estimate as a real scalar or vector.
If you specify a scalar, all initial state estimates are set to this scalar. If you
specify a vector, the length of the vector must match with the number of states in
the model.

 Kalman Filter

2-9

• State estimation error covariance P[0] (only when only when time-varying
Kalman filter is used) — Specify the initial state estimation error covariance P[0]
for discrete-time Kalman filter or P(0) for continuous-time Kalman filter. Must be
specified as one of the following:

• Real nonnegative scalar. P is an Ns-by-Ns diagonal matrix with the scalar on
the diagonals. Ns is the number of states in the model.

• Vector of real nonnegative scalars. P is an Ns-by-Ns diagonal matrix with the
elements of the vector on the diagonals of P.

• Ns-by-Ns positive semi-definite matrix.
• External — Inherit the values from input ports. The block includes an additional

input port X0. A second additional input port P0 is added when time-varying Kalman
filter is used. X0 and P0 must satisfy the same conditions described previously when
you specify them in the dialog box.

Use the Kalman Gain K from the model variable

Specify whether to use the pre-identified Kalman Gain contained in the state-space plant
model. This option is available only when:

• Model Source is Dialog: LTI State-Space Variable and Variable is an
identified state-space model (idss) with a nonzero K matrix.

• Time Invariant Q, Time Invariant R and Time Invariant N options are selected.

If the Use G and H matrices (default G=I and H=0) option is selected, Time
Invariant G and Time Invariant H options must also be selected.

Use G and H matrices (default G=I and H=0)

Specify whether to use non-default values for the G and H matrices. If you select this
option, you must specify:

• G — Specify the G matrix. It must be a real matrix with as many rows as the A
matrix. The default value is 1.

• Time-invariant G — Specify if the G matrix is time invariant. If you unselect this
option, the block includes an additional input port G.

• H — Specify the H matrix. It must be a real matrix with as many rows as the C
matrix and as many columns as the G matrix. The default value is 0.

2 Block Reference

2-10

• Time-invariant H — Specify if the H matrix is time invariant. If you unselect this
option, the block includes an additional input port G.

• Number of process noise inputs — Specify the number of process noise inputs in
the model. The default value is 1.

This option is available only when Time-invariant G and Time-invariant H are
unselected. Otherwise, this information is inferred from the G or H matrix.

Q

Process noise covariance matrix, specified as one of the following:

• Real nonnegative scalar. Q is an Nw-by-Nw diagonal matrix with the scalar on the
diagonals. Nw is the number of process noise inputs in the model.

• Vector of real nonnegative scalars. Q is an Nw-by-Nw diagonal matrix with the
elements of the vector on the diagonals of Q.

• Nw-by-Nw positive semi-definite matrix.

Time Invariant Q

Specify if the Q matrix is time invariant. If you unselect this option, the block includes an
additional input port Q.

R

Measurement noise covariance matrix, specified as one of the following:

• Real positive scalar. R is an Ny-by-Ny diagonal matrix with the scalar on the
diagonals. Ny is the number of measured outputs in the model.

• Vector of real positive scalars. R is an Ny-by-Ny diagonal matrix with the elements of
the vector on the diagonals of R.

• Ny-by-Ny positive-definite matrix.

Time Invariant R

Specify if the R matrix is time invariant. If you unselect this option, the block includes an
additional input port R.

 Kalman Filter

2-11

N

Process and measurement noise cross-covariance matrix. Specify it as a Nw-by-Ny
matrix. The matrix [Q N; NT R] must be positive definite.

Time Invariant N

Specify if the N matrix is time invariant. If you unselect this option, the block includes an
additional input port N.

Add input port u

Select this option if your model contains known inputs u(t) or u[k]. The option is
selected by default. Unselecting this option removes the input port u from the block and
removes the B, D and Number of inputs parameters from the block dialog box.

Add input port Enable to control measurement updates

Select this option if you want to control the measurement updates. The block includes
an additional inport Enable. The Enable input port takes a scalar signal. This option is
unselected by default.

By default the block does measurement updates at each time step to improve the state
and output estimates x̂ and ŷ based on measured outputs. The measurement update is
skipped for the current sample time when the signal in the Enable port is 0. Concretely,
the equation for state estimates become ˆ () () ˆ () () ()&x t A t x t B t u t= + for continuous-time
Kalman filter and ˆ[|] []ˆ[|] [] []x n n A n x n n B n u n+ = - +1 1 for discrete-time.

External Reset

Option to reset estimated states and parameter covariance matrix using specified initial
values.

Suppose you reset the block at a time step, t. If the block is enabled at t, the software
uses the initial parameter values specified either in the block dialog or the input ports P0
and X0 to estimate the states. In other words, at t, the block performs a time update and

2 Block Reference

2-12

if it is enabled, a measurement update after the reset. The block outputs these updated
estimates.

Specify one of the following:

• None (Default) — Estimated states x̂ and state estimation error covariance matrix P
values are not reset.

• Rising — Triggers a reset when the control signal rises from a negative or zero value
to a positive value. If the initial value is negative, rising to zero triggers a reset.

• Falling — Triggers a reset when the control signal falls from a positive or a zero
value to a negative value. If the initial value is positive, falling to zero triggers a reset.

• Either — Triggers a reset when the control signal is either rising or falling.
• Level — Triggers a reset in either of these cases:

• The control signal is nonzero at the current time step.
• The control signal changes from nonzero at the previous time step to zero at the

current time step.
• Level hold — Triggers reset when the control signal is nonzero at the current time

step.

When you choose an option other than None, a Reset input port is added to the block to
provide the reset control input signal.

Output estimated model output y

Add ŷ output port to the block to output the estimated model outputs. The option is
unselected by default.

Output estimated model output P or Z

Add P output port or Z output port to the block. The Z matrix is provided only when
Time Domain is Discrete Time and the Use the current measurement y[n] to
improve xhat[n] is selected. Otherwise, the P matrix, as described in the “Description”
on page 2-2 section previously, is provided.

The option is unselected by default.

 Kalman Filter

2-13

Ports

Port Name Port
Type

(In/
Out)

Description

u (Optional) In Known inputs, specified as a real scalar or vector.
y In Measured outputs, specified as a real scalar or vector.
xhat Out Estimated states, returned as a real scalar or vector.
yhat
(Optional)

Out Estimated outputs, returned as a real scalar or vector.

P or Z
(Optional)

Out State estimation error covariance, returned as a matrix.

A (Optional) In A matrix, specified as a real matrix.
B (Optional) In B matrix, specified as a real matrix.
C (Optional) In C matrix, specified as a real matrix.
D (Optional) In D matrix, specified as a real matrix.
G (Optional) In G matrix, specified as a real matrix.
H (Optional) In H matrix, specified as a real matrix.
Q (Optional) In Q matrix, specified as a real scalar, vector or matrix.
R (Optional) In R matrix, specified as a real scalar, vector or matrix.
N (Optional) In N matrix, specified as a real matrix.
P0 (Optional) In P matrix at initial time, specified as a real scalar, vector, or

matrix.
X0 (Optional) In Initial state estimates, specified as a real scalar or vector.
Enable
(Optional)

In Control signal to enable measurement updates, specified as a
real scalar.

Reset
(Optional)

In Control signal to reset state estimates, specified as a real scalar.

2 Block Reference

2-14

Supported Data Types
• Double-precision floating point
• Single-precision floating point (for discrete-time Kalman filter only)

Note:

• All input ports except Enable and Reset must have the same data type (single or
double).

• Enable and Reset ports support single, double, int8, uint8, int16, uint16,
int32, uint32, and boolean data types.

Limitations
• The plant and noise data must satisfy:

• (C,A) detectable
•

R > 0 and Q NR NT
- ≥

-1
0

•
(,)A NR C Q NR NT

- -

- -1 1 has no uncontrollable mode on the imaginary axis (or
unit circle in discrete time) with the notation

Q GQG

R R HN N H HQH

N G QH N

T

T T T

T

=

= + + +

= +()

• The continuous-time Kalman filter cannot be used in Function-Call Subsystems or
Triggered Subsystems.

References

[1] Franklin, G.F., J.D. Powell, and M.L. Workman, Digital Control of Dynamic Systems,
Second Edition, Addison-Wesley, 1990.

[2] Lewis, F., Optimal Estimation, John Wiley & Sons, Inc, 1986.

 Kalman Filter

2-15

See Also
kalman

Related Examples
• “State Estimation Using Time-Varying Kalman Filter”

2 Block Reference

2-16

LTI System
Use linear system model object in Simulink

Description

The LTI System block imports linear system model objects into the Simulink
environment.

The imported system must be proper. State-space models are always proper. SISO
transfer functions or zero-pole-gain models are proper if the degree of their numerator
is less than or equal to the degree of their denominator. MIMO transfer functions are
proper if all their SISO entries are proper.

Dialog Box

 LTI System

2-17

LTI system variable
Enter your LTI model. This block supports state-space, zero/pole/gain, and transfer
function formats. Your model can be discrete- or continuous-time.

Initial states (state-space only)
If your model is in state-space format, you can specify the initial states in vector
format. The default is zero for all states.

2 Block Reference

2-18

LPV System
Simulate Linear Parameter-Varying (LPV) systems

Description

Represent and simulate Linear Parameter-Varying (LPV) systems in Simulink. The
block also supports code generation.

A linear parameter-varying (LPV) system is a linear state-space model whose dynamics
vary as a function of certain time-varying parameters called scheduling parameters. In
MATLAB, an LPV model is represented in a state-space form using coefficients that are
parameter dependent.

Mathematically, an LPV system is represented as:

dx t A p x t B p u t

y t C p x t D p u t

x x

() = () () + () ()

() = () () + () ()

() =0
0

where

• u(t) are the inputs
• y(t) the outputs
• x(t) are the model states with initial value x0
• dx t() is the state derivative vector &x for continuous-time systems and the state

update vector x t T+()D for discrete-time systems. ΔT is the sample time.

 LPV System

2-19

• A(p), B(p), C(p) and D(p) are the state-space matrices parameterized by the
scheduling parameter vector p.

• The parameters p = p(t) are measurable functions of the inputs and the states of
the model. They can be a scalar quantity or a vector of several parameters. The set
of scheduling parameters define the scheduling space over which the LPV model is
defined.

The block implements a grid-based representation of the LPV system. You pick a
grid of values for the scheduling parameters. At each value p = p*, you specify the
corresponding linear system as a state-space (ss or idss) model object. You use the
generated array of state-space models to configure the LPV System block.

The block accepts an array of state-space models with operating point information.
The information on the scheduling variables is extracted from the SamplingGrid
property of the LTI array. The scheduling variables define the grid of the LPV models.
They are scalar-valued quantities that can be functions of time, inputs and states,
or constants. They are used to pick the local dynamics in the operating space. The
software interpolates the values of these variables. The block uses this array with data
interpolation and extrapolation techniques for simulation.

The LPV system representation can be extended to allow offsets in dx, x, u and y
variables. This form is known as affine form of the LPV model. Mathematically, the
following represents an LPV system:

dx t A p x t B p u t dx p A p x p B p u p

y t C p

() = () () + () () + () - () () -()
() = ()

() ()

xx t D p u t y p C p x p D p u p

x x

() + () () + () - () () -()

() =

() ()

0 0

dx p x p u p y p() () () (), , , are the offsets in the values of dx(t), x(t), u(t) and y(t) at
a given parameter value p = p(t).

You obtain such representations of the linear system array by linearizing a Simulink
model over a batch of operating points (see “Batch Linearization” in Simulink Control
Design documentation.) The offsets then correspond to the operating points at which you
linearized the model.

The following limitations apply to the LPV System block:

2 Block Reference

2-20

• Internal delays cannot be extrapolated to be less than their minimum value in the
state-space model array.

• When using an irregular grid of linear models to define the LPV system, only the
nearest neighbor interpolation scheme is used. This may reduce the accuracy of
simulation results. It is recommended to work with regular grids. To learn more about
regular and irregular grids, see “Regular vs. Irregular Grids”.

Data Type Support

Double data only. You must convert any other data type for input signals or model
properties to double data.

Parameters

The LPV System Block Parameter dialog box contains four tabs for specifying the system
data, scheduling algorithm and output ports. The following table summarizes the block
parameters.

Task Parameters

Specify an array of state-space models and
initial states

In LPV Model tab:

• State-space array
• Initial state

Specify operating point offsets In LPV Model tab:

• Input offset
• Output offset
• State offset

Specify offsets in state derivative or update
variable

in the LPV Model tab:

• State derivative/update offset
Specify which model matrices are fixed and
their nominal values to override entries in
model data.

In the Fixed Entries tab:

• Nominal Model
• Fixed Coefficient Indices

 LPV System

2-21

Task Parameters

In some situations, you may want to
replace a parameter-dependent matrix
such as A(p) with a fixed value A* for
simulation. For example, A* may represent
an average value over the scheduling
range.
Specify options for interpolation and
extrapolation

In the Scheduling tab:

• Interpolation method
• Extrapolation method
• Index search method
• Begin index search using previous

index result
Specify additional outputs for the block In the Outputs tab:

• Output states
• Output state derivatives

(continuous-time) or updates
(discrete-time)

• Output interpolated state-space
data

• Output interpolated offsets

State-space array

An array of state-space (ss or idss) models. All the models in the array must use the
same definition of states. Use the SamplingGrid property of the state-space object to
specify scheduling parameters for the model. See the ss or idss model reference page for
more information on the SamplingGrid property.

Initial state

Initial conditions to use with the local model to start the simulation, specified one of the
following:

• 0 (Default)

2 Block Reference

2-22

• Double vector of length equal to the number of model states

Input offset

Offsets in input u(t), specified as one of the following:

• 0 (Default) — Use when there are no input offsets (u p p() = "0).

• Double vector of length equal to the number of inputs — Use when input offset is the
same across the scheduling space.

• Double array of size [nu 1 sysArraySize] — Use when offsets are present and they
vary across the scheduling space. Here, nu = number of inputs, sysArraySize =
array size of state-space array. Use size to determine the array size.

Output offset

Offsets in output y(t), specified as one of the following:

• 0 (Default) — Use when there are no output offsets y p p() = "0 .

• Double vector of length equal to the number of outputs. Use when output offsets are
the same across the scheduling space.

• Double array of size [ny 1 sysArraySize]. Use when offsets are present and they
vary across the scheduling space. Here, ny = number of outputs, sysArraySize =
array size of state-space array. Use size to determine the array size.

State offset

Offsets in states x(t), specified as one of the following:

• 0 (Default) — Use when there are no state offsets x p p() = "0 .

• Double vector of length equal to the number of states. Use when the state offsets are
the same across the scheduling space.

• Double array of size [nx 1 sysArraySize], where nx = number of states,
sysArraySize = array size of state-space array. Use when offsets are present and
they vary across the scheduling space. Here, nx = number of states, sysArraySize =
array size of state-space array. Use size to determine the array size.

 LPV System

2-23

State derivative/update offset

Offsets in state derivative or update variable dx(t), specified as one of the following:

• If you obtained the linear system array by linearization under equilibrium conditions,
select the Assume equilibrium conditions option. This corresponds to an offset of
dx p() = 0 for a continuous-time system and dx p x p() = () for a discrete-time system.
This option is selected by default.

• If the linear system contains at least one system that you obtained under non-
equilibrium conditions, uncheck the Assume equilibrium conditions option.
Specify one of the following in the Offset value field:

• If the dx offset values are the same across the scheduling space, specify as a
double vector of length equal to the number of states.

• If the dx offsets are present and they vary across the scheduling space, specify as
a double array of size [nx 1 sysArraySize], where nx = number of states, and
sysArraySize = array size of state-space array.

Nominal Model

State-space model that provides the values of the fixed coefficients, specified as one of the
following:

• Use the first model in state-space array (Default:) — The first model in
the state-space array is used to represent the LPV model. In the following example,
the state-space array is specified by object sys and the fixed coefficients are taken
from model sys(:,:,1).

% Specify a 4-by-5 array of state-space models.

sys = rss(4,2,3,4,5);

a = 1:4;

b = 10:50;

[av,bv] = ndgrid(a,b);

% Use “alpha” and “beta” variables as scheduling parameters.

sys.SamplingGrid = struct('alpha',av,'beta',bv);

Fixed coefficients are taken from the model sysFixed = sys(:,:,1). If the
(2,1) entry of A matrix is forced to be fixed, its value used during the simulation is
sysFixed.a(2,1).

2 Block Reference

2-24

• Custom value — Specify a different state-space model for fixed entries. Specify a
variable for the fixed model in the State space model field. The fixed model must
use the same state basis as the state-space array in the LPV model.

Fixed Coefficient Indices

Specify which coefficients of the state-space matrices and delay vectors are fixed.

Specify one of the following:

• Scalar Boolean (true or false) if all entries of a matrix are to be treated the same
way.

• The default values for A matrix, B matrix, C matrix, and D matrix are false.
This means that all entries are free for A, B, C, and D matrices of state-space array.

• The default values for Input delay, Output delay, and Internal delay are
true. This means that all entries are fixed for the model delays.

• Logical matrix of a size compatible with the size of the corresponding matrix:

State-space matrix Size of fixed entry matrix

A matrix nx-by-nx
B matrix nx-by-nu
C matrix ny-by-nx
D matrix ny-by-nu
Input delay nu-by-1
Output delay ny-by-1
Internal delay ni-by-1

where, nu = number of inputs, ny = number of outputs, nx = number of states, ni =
length of internal delay vector.

• Numerical indices to specify the location of fixed entries. See sub2ind reference page
for more information on how to generate numerical indices corresponding to a given
subscript (i,j) for an element of a matrix.

 LPV System

2-25

Interpolation method

Interpolation method. Defines how the state-space data must be computed for scheduling
parameter values that are located away from their grid locations.

Specify one of the following options:

• Flat — Choose the state-space data at the grid point closest, but not larger than, the
current point. The current point is the value of the scheduling parameters at current
time.

• Nearest — Choose the state-space data at the closest grid point in the scheduling
space.

• Linear — Obtain state-space data by linear interpolation of the nearest 2d neighbors
in the scheduling space, where d = number of scheduling parameters.

The default interpolation scheme is Linear for regular grids of scheduling parameter
values. For irregular grids, the Nearest interpolation scheme is always used regardless
of the choice made. to learn more about regular and irregular grids, see “Regular vs.
Irregular Grids”.

The Linear method provides the highest accuracy but takes longer to compute. The
Flat and Nearest methods are good for models that have mode-switching dynamics.

Extrapolation method

Extrapolation method. Defines how to compute the state-space data for scheduling
parameter values that fall outside the range over which the state-space array has been
provided (as specified in the SamplingGrid property).

Specify one of the following options:

• Clip (Default:) — Disables extrapolation and returns the data corresponding to the
last available scheduling grid point that is closest to the current point.

• Linear — Fits a line between the first or last pair of values for each scheduling
parameter, depending upon whether the current value is less than the first or greater
than the last grid point value, respectively. This method returns the point on that
line corresponding to the current value. Linear extrapolation requires that the
interpolation scheme be linear too.

2 Block Reference

2-26

Index search method

The location of the current scheduling parameter values in the scheduling space is
determined by a prelookup algorithm. Select Linear search or Binary search. Each
search method has speed advantages in different situations. For more information on
this parameter, see the “Prelookup” block reference page in Simulink documentation.

Begin index search using previous index result

Select this check box when you want the block to start its search using the index found
at the previous time step. For more information on this parameter. see the “Prelookup”
block reference page in Simulink documentation.

Output states

Add x port to the block to output state values. This option is selected by default.

Output state derivatives (continuous-time) or updates (discrete-time)

Add dx port to the block to output state derivative values or update the values. This
option is selected by default.

Output interpolated state-space data

Add ss port to the block to output state-space data as a structure. This option is selected
by default.

The fields of the generated structure are:

• State-space matrices A, B, C, D.
• Delays InputDelay, OutputDelay, and InternalDelay. The InternalDelay field

is available only when the model has internal delay.

Output interpolated offsets

Add offset port to the block to output LPV model offsets u p y p x p dx p() () () ()(), , , .

The fields of the structure are:

 LPV System

2-27

• InputOffset, OutputOffset, StateOffset, and StateDerivativeOffset in
continuous-time.

• InputOffset, OutputOffset, StateOffset, and StateUpdateOffset in discrete-
time.

Examples

Configure the Scheduling Parameter Input Port

Consider a 2-input, 3 output, 4-state LPV model. Use input u(2) and state x(1) as
scheduling parameters. Configure the Simulink model as shown in the following figure.

Simulate a Linear Parameter-Varying System

Consider a linear mass-spring-damper system whose mass changes as a function of an
external load command. The governing equation is:

m u y cy k y y F t() + + () =
¨

()&

where m(u) is the mass dependent upon the external command u, c is the damping ratio,
k is the stiffness of the spring and F(t) is the forcing input. y(t) is position of the mass
at a given time t. For a fixed value of u, the system is linear and expressed as:

2 Block Reference

2-28

A k

m

c

m

B

m

C

x Ax Bu

=
- -

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

=
È

Î

Í
Í
Í

˘

˚

˙
˙
˙

= []

= +

0 1 0

1 1 0, ,

, & yy Cx=

where x
y

y
=

È

Î
Í

˘

˚
˙
&

 is the state vector and m is the value of the mass for a given value of u.

In this example, you want to study the model behavior over a range of input values
from 1 to 10 Volts. For each value of u, measure the mass and compute the linear
representation of the system. Suppose, mass is related to the input by the relationship:
m u u u() .= +10 0 1

2 . For values of u ranging from 1:10 results in the following array of
linear systems.

% Specify damping coefficient.

c = 5;

% Specify stiffness

k = 300;

% Specify load command.

u = 1:10;

% Specify mass.

m = 10*u + 0.1*u.^2;for i = 1:length(u)

A = [0 1; -k/m(i), -c/m(i)];

B = [0; -1/m(i)];

C = [1 0];

% Compute linear system at a given mass value.

for i = 1:length(u)

 A = [0 1; -k/m(i), -c/m(i)];

 B = [0; -1/m(i)];

 C = [1 0];

 sys(:,:,i) = ss(A,B,C,0);

end

The variable u is the scheduling input. Add this information to the model.

sys.SamplingGrid = struct('LoadCommand',u);

Configure the LPV System block:

• Type sys in the State-space array field.

 LPV System

2-29

• Connect the input port par to a one-dimensional source signal that generates
the values of the load command. If the source provides values between 1 and 10,
interpolation is used to compute the linear model at a given time instance. Otherwise,
extrapolation is used.

Ports

Port Name Port
Type

(In/
Out)

Description

u In Input signal u(t) in Equation 2-2 described previously. In multi-
input case, this port accepts a signal of the dimension of the
input.

2 Block Reference

2-30

Port Name Port
Type

(In/
Out)

Description

par In Provides the signals for variables defining the scheduling space
(“sampling grid” variables). The scheduling variables can be
functions of time, inputs and states, or constants. The required
dependence can be achieved by preparing a scheduling signal
using clock input (for time), input signal (u), and the outputs
signals (x, dx/dt, y) of the LPV block, as required.

y Out Model output
x Out Values of the model states
xdot Out Values of the state derivatives. The state derivatives are

sometimes used to define the scheduling parameters.
ss Out Local state-space model at the major simulation time steps
offset Out LPV model offsets

Related Examples
• “Using LTI Arrays for Simulating Multi-Mode Dynamics”
• “Approximating Nonlinear Behavior using an Array of LTI Systems”
• “LPV Approximation of a Boost Converter Model”

More About
• “Linear Parameter-Varying Models”

